

Machine Learning For Reconstruction in JUNO

Liam Francis Jones

Supervisors: Prof. Costas Andreopoulos & Prof. Xianguo Lu

The JUNO Experiment

The JUNO experiment is located in the Guangdong region of southern China.

- Primary Goals
 - Determine the Neutrino Mass Ordering (NMO) → ~3σ in 6 years
 - Sub-percentage measurements of $\sin^2 \theta_{12}$, Δm^2_{21} and Δm^2_{31} (world leading within 100 days!)
- Expansive complimentary physics programme

Neutrino Source	Frequency		Ene	rgy Re	egion ((MeV)	
Reactor	60 / Day						
Atmosphere	100s / Year						
Supernova Burst	5000 at 10 kpc						
Sun	2-4 / Year						
Earth Crust/Mattle	400 / Year						
		0.1	1	10	10 ²	10 ³	10 ⁴

JUNO Detector

- Largest of its kind, at 20 kton of Liquid Scintillator
 - Energy Resolution of 3% at 1 MeV
 - 1400 photo-electrons per MeV of deposited energy
- Excellent photocathode coverage
 - 17,612 20-inch PMTs (75% Coverage)
 - 25,600 3-inch PMTs (3% Coverage)
- Background mitigation
 - Rock overburden of ~700m, water pool with 2,400 20-inch veto PMTs
 - Effective impurity removal

3

 $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu})$ assuming NO

Atmospheric Neutrinos @ JUNO

Atmospheric multi-GeV neutrinos and antineutrinos offer a complementary channel to measure NMO

• The matter effect in atmospheric neutrinos give insight to NMO

- If NO \rightarrow Neutrinos experience stronger matter effect
- If IO \rightarrow Antineutrinos experience stronger matter effect

 $P(\nu_{\mu} \rightarrow \nu_{\mu})$ assuming NO

JUNO

Reconstruction

There are three main tasks necessary for atmospheric neutrino oscillation analysis:

Library Event Matching

New way of classification and reconstruction:

- Compare to a large MC library
- Select the top matches
- From this, provide energy, direction and flavour with uncertainties
- Simple, interpretable and a benchmark for complex ML models

JUNO

Initial Testing on ν_e Events

For an initial Proof-of-concept run for Library Event Matching (LEM):

- Dataset: ~3k $\nu_{\rm e}$ CC events from full containment MC (1–20 GeV)
- Features: Cluster charge and angular radius
- Goal: Estimate energy and radial vertex distance

6

Methodology

- 1. Build Library
 - Simulate fully-contained atmospheric neutrino events (1–20 GeV)
- 2. Event Reduction
 - Cluster main activity regions in PMT data using Kernel Density Estimation (KDE)
 - Extract compact features (cluster charge and angular radius)
- 3. Event Comparison
 - Use k-Nearest Neighbours (KNN) to compare input event features to the library
 - Compute similarity using Manhattan/Euclidean distances
- 4. Output Estimation
 - Average top matches to reconstruct energy, radial vertex distance
 - Statistical uncertainty from the spread of top matches

Initial Reconstruction Performance

16

0.200

0.175

0.150

0.125

ш: Q: 0.100

0.075

0.025

Shows promise as an initial proof-of-concept:

- Energy and radial distance show promising trends
- The RMSE is 3.06 GeV and 2.64 m respectively
- Follows the regression line event with basic features and low stats

Future Developments

- Train with a larger dataset of MC samples
- Add more representative features
- Lean into deeper learning architectures
 - Use GNN models for reduced representations of events
 - Triplet loss to help?
 - Can extra features be extracted from the waveform using a NN?
- Benchmark against current JUNO ML methods
- Create a full classification and reconstruction chain

Conclusion

Work completed so far:

- Built a proof-of-concept LEM pipeline, cluster-based event reduction, KNN matching, and tested on v_e CC events
- Demonstrated feasibility for basic energy and vertex estimation.
- Took part in shift work during the water filling commissioning phase

Future Work:

- Realise a full LEM model for use in JUNO
- Test with deep learning models

Back Up

NMO @ JUNO

PMT Statistics

Size		20-inch	20-inch	3-inch	
Brand		Hamamatsu	NNVT	HZCV	
Nº PMTs		5000	15012	25600	
Charge Collection		Dynode	MCP	Dynode	
Gain		~10 ⁷	~10 ⁷	3x10 ⁶	
Photon Detection Efficiency		28.5%	30.1%	25%	
Mean Dark Count Rate (kHz)	Bare	15.3	49.3	0.5	
	Potted	17.0	31.2		
Transit Time Spread (σ) [ns]		1.3	7	1.6	
Coverage		75%		3%	
Reference		arXiv. 2205.08629		NIM.A 1005 (2021) 165347	

Energy Resolution Vs Other Experiments

	Target Mass (ton)	Energy Resolution at 1 MeV
Daya Bay	20	8%
Borexino	300	5%
KamLAND	1,000	6%
JUNO	20,000	3%

