

Wakefield Excitation in Carbon Nanotubes and Graphene Layers: Hydrodynamic Approach and PIC Simulations

Pablo Martín-Luna¹, Alexandre Bonatto², Cristian Bontoiu^{3,4}, Guoxing Xia^{4,5} Juan Rodríguez-Pérez⁶ and Javier Resta-López⁶

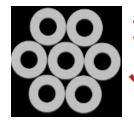
¹ Instituto de Física Corpuscular (IFIC), Universitat de València- Consejo Superior de Investigaciones Científicas, 46980 Paterna, Spain

² Graduate Program in Information Technology and Healthcare Management, and the Beam Physics Group, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, 90050-170, Brazil

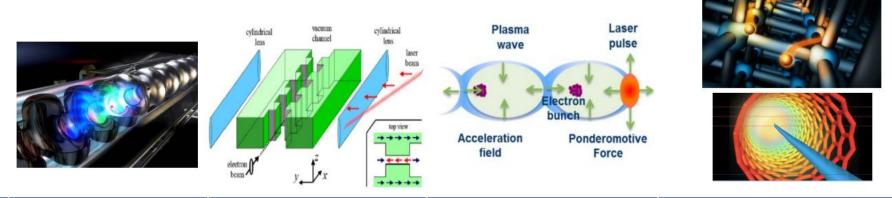
³ Department of Physics, The University of Liverpool, Liverpool L69 3BX, United Kingdom

⁴ The Cockcroft Institute, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom

⁵ Department of Physics and Astronomy, The University of Manchester, Manch ester M13 9PL, United Kingdom


⁶ Instituto de Ciencia de los Materiales (ICMUV), Universitat de València, 46071 Valencia, Spain

Email: pablo.martin@uv.es

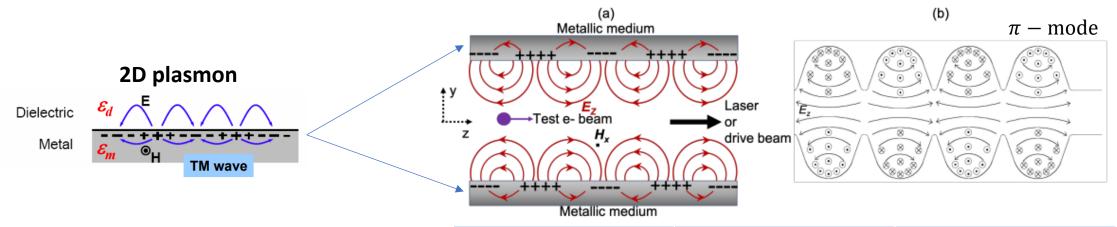


Contents

- 1. Introduction
- 2. Linearized Hydrodynamic Model (LHM)
- 3. Carbon nanotubes (CNTs)
- 4. Graphene layers
- 5. Discussion
- 6. Conclusions and outlook

1. Introduction

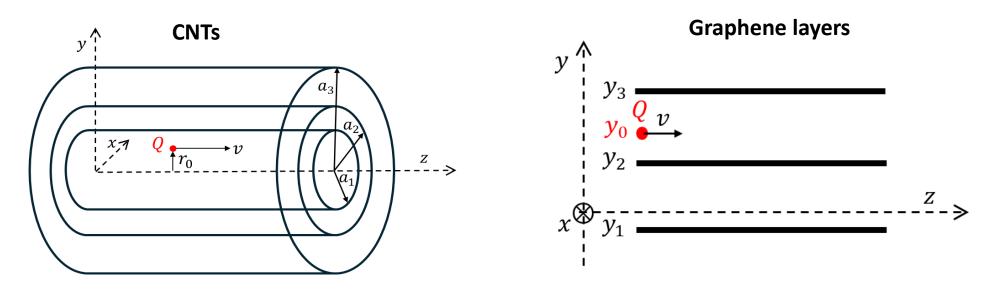
- The current state-of-the-art of the RF techniques for particle acceleration is limited to gradients on the order of 100 MV/m
- To obtain higher energies, we can increase the length of the accelerators... or use new techniques of acceleration with higher gradients



	Conventional RF	Dielectric laser – driven	Plasma / Laser wakefield	Solid-state plasma wakefield
	cavities	acceleration (DLA)	acceleration (PWFA / LWFA)	acceleration
Based on	Normal / superconducting cavities	Quartz / silicon structure	Gaseous plasma	Crystals, nano-channels, CNTs
Max. longitudinal electric field	~100 MV/m	~10 GV/m	~100 GV/m	$\sim 1-100~{ m TV/m}$ (prediction)
Limitation	Surface breakdown	Damage threshold	Wave breaking	Atomic lattice dissociation

1. Introduction

Plasmonic acceleration


- Excitation of surface plasmonic modes by laser (laser-driven) or charged particle beam (beam-driven)
- Collective motion of wall electrons acting like a structured plasma
- To properly excite wakefields laser or beam driving parameters need to be in the time and space scale of the plasmon wave

	Plasmonic acceleration	RF cavities
Aperture size	∼µm	~cm
Length	~mm	~10cm – m
Longitudinal electric field	~100 GV/m	~100 MV/m
Operation	Travelling wave (TW)	Standing Wave (SW) or TW

2. Linearized Hydrodynamic Model (LHM)

- In this theory, carbon nanostructures surfaces are modelled as an infinitesimally thin and infinitely long shells with uniform surface density n_0 . These electrons are confined in the surfaces
- A driving charge Q travels with velocity v, parallel to the z-axis: $\mathbf{r_0} = (x_0, y_0, vt)$
- Position of electrons excited at the jth surface: \mathbf{r}_i

2D density:
$$n(\mathbf{r}_i, t) = n_0 + n_i(\mathbf{r}_i, t)$$

Y-N. Wang, Z. L. Mišković, Phys. Rev. A 69 (2004) 022901 Z. L. Mišković et al., Phys. Lett. A 329 (2004) 94

2. Linearized Hydrodynamic Model (LHM)

- The electronic excitations on the surfaces can be described by two differential equations:
 - (i) the continuity equation

$$\frac{\partial n_j(\mathbf{r}_j, t)}{\partial t} + n_0 \nabla_j \cdot \mathbf{u}_j(\mathbf{r}_j, t) = 0$$

 $n_j(\mathbf{r}_j, t)$: perturbed surface density $\mathbf{u}_j(\mathbf{r}_j, t)$: velocity of the plasma ∇_j differentiates only tangentially to the jth surface

(ii) the momentum-balance equation

$$\frac{\partial \mathbf{u}_{j}(\mathbf{r}_{j},t)}{\partial t} = \nabla_{j} \cdot \Phi(\mathbf{r}_{j},t) - \frac{\alpha}{n_{0}} \nabla_{j} \cdot n_{j}(\mathbf{r}_{j},t) + \frac{\beta}{n_{0}} \nabla_{j} \left[\nabla_{j}^{2} n_{j}(\mathbf{r}_{j},t) \right] - \gamma \mathbf{u}_{j}(\mathbf{r}_{j},t)$$
Acoustic modes
$$\alpha = v_{F}^{2}/2, \text{ with } v_{F} = \sqrt{2\pi n_{0}}$$
Quantum correction
$$\beta = 1/4$$

2. Linearized Hydrodynamic Model (LHM)

• The electric potential is given by $\Phi = \frac{Q}{\|\mathbf{r} - \mathbf{r_0}\|} + \Phi_{ind}$, where

$$\Phi_{ind}(\mathbf{r},t) = -\sum_{j} \int d^{2}\mathbf{r}_{j} \frac{n_{j}(\mathbf{r}_{j},t)}{\|\mathbf{r} - \mathbf{r}_{j}\|}$$

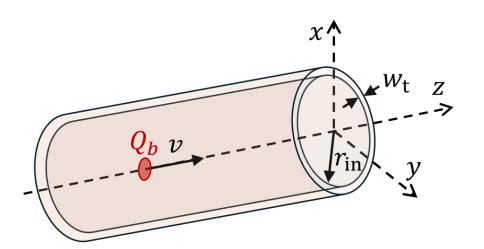
is the potential resulting from the perturbation of the electron fluids

- The system of partial differential equations can be analytically solved by using Fourier transforms
- Induced wakefields:

$$W_x = -\frac{\partial \Phi_{ind}}{\partial x}$$
 $W_y = -\frac{\partial \Phi_{ind}}{\partial y}$ $W_z = -\frac{\partial \Phi_{ind}}{\partial z}$

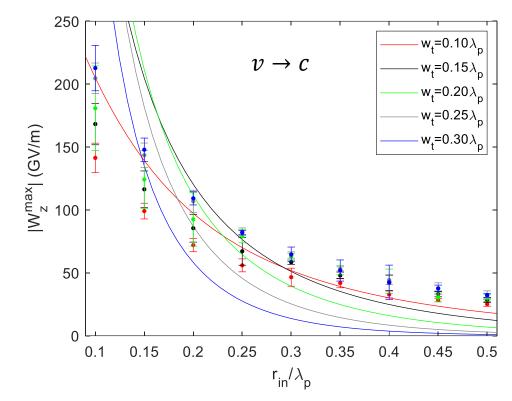
• In the LHM, the longitudinal wakefield along the z-axis can be approximated by:

$$W_z \approx W_z^{max} \cos(k_m \zeta)$$


$$W_z^{max} = -4qk_0^3 I_0(|k_0|r_0)I_0(|k_0|r)\Omega_p^2 a^2 K_0^2(|k_0|a) \left| \frac{\partial Z_0}{\partial k} \right|_{k=k_0}^{-1}$$

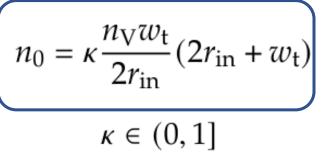
where k_0 are the positive roots of the condition of the plasma resonance $Z_0(k_0)=(k_0v)^2-\omega_0^2(k_0)=0$, where $\omega_0(k)$ is the dispersion relation for the fundamental mode

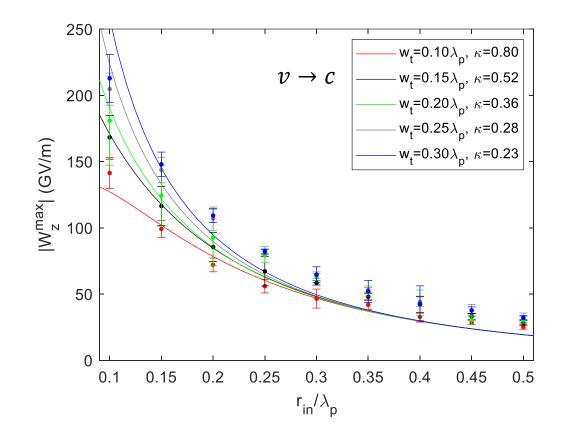
$$\omega_m(k) = \left[\alpha\left(k^2 + \frac{m^2}{a^2}\right) + \beta\left(k^2 + \frac{m^2}{a^2}\right)^2 + \Omega_p^2 a^2\left(k^2 + \frac{m^2}{a^2}\right)K_m(|k|a)I_m(|k|a)\right]^{1/2} \Omega_p = \sqrt{4\pi n_0/a} \text{ plasma frequency}$$


PIC simulations

- The Fourier–Bessel Particle-in-Cell (FBPIC) code is used to perform the simulations using a cylindrical CNT hollow plasma channel model employing 2D radial grids.
- This code is based on a **collisionless** fluid model which **does not take into account the solid-state properties** related to the ionic lattice.
- We define a hollow plasma channel model with inner radius r_{in} and wall thickness w_t with a volumetric density $n_V=10^{28}~{\rm m}^{-3}$ of free electrons within this region.
- We will consider a **bi-Gaussian beam driver**, with $\sigma_{\zeta} = \sigma_r = 3.33$ nm, and charge $Q_b = -44$ fC travelling **on-axis**. The beam energy follows a Gaussian distribution (mean: 1 GeV, standard deviation: 0.005 GeV).

• To relate the surface density of the LHM and the volumetric density of PIC simulations, we will assume that the **number of free electrons** within the cylindrical surface of radius $a = r_{in}$ is **equal** to the number of free electrons in the wall thickness w_t .

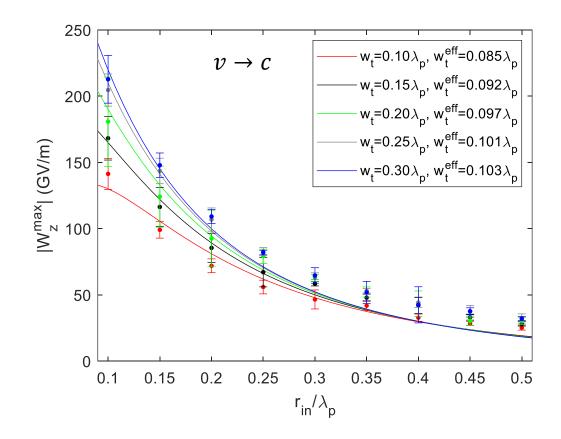

$$n_0 = \frac{n_{\rm V} w_{\rm t}}{2r_{\rm in}} (2r_{\rm in} + w_{\rm t})$$



$$\lambda_p=rac{2\pi c}{\omega_p}$$
 is the plasma wavelength, where $\omega_p=\sqrt{e^2n_V/\varepsilon_0m_e}$ is the plasma frequency.

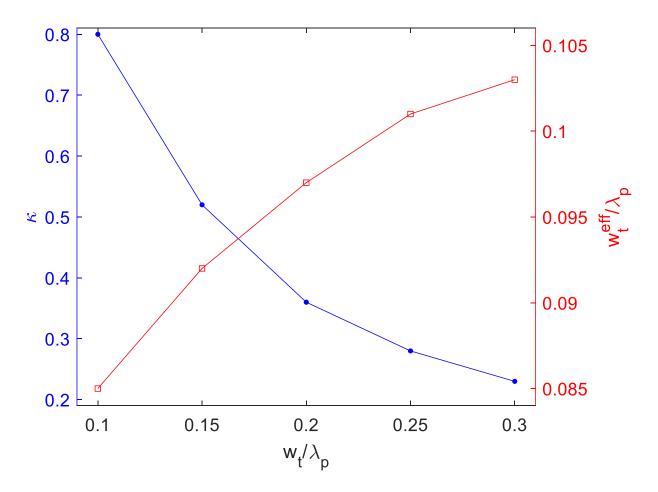
Good qualitative agreement; quantitatively improves if w_t is smaller.

• The comparison is better if we consider an **effective density** to take into account that not all free electrons of the wall thickness excite the wakefield effectively.

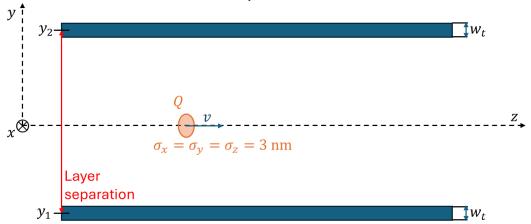


$$\lambda_p=rac{2\pi c}{\omega_p}$$
 is the plasma wavelength, where $\omega_p=\sqrt{e^2n_V/\varepsilon_0m_e}$ is the plasma frequency.

• Alternatively, we can consider an **effective wall thickness** $w_{\mathsf{t}}^{\mathsf{eff}}$

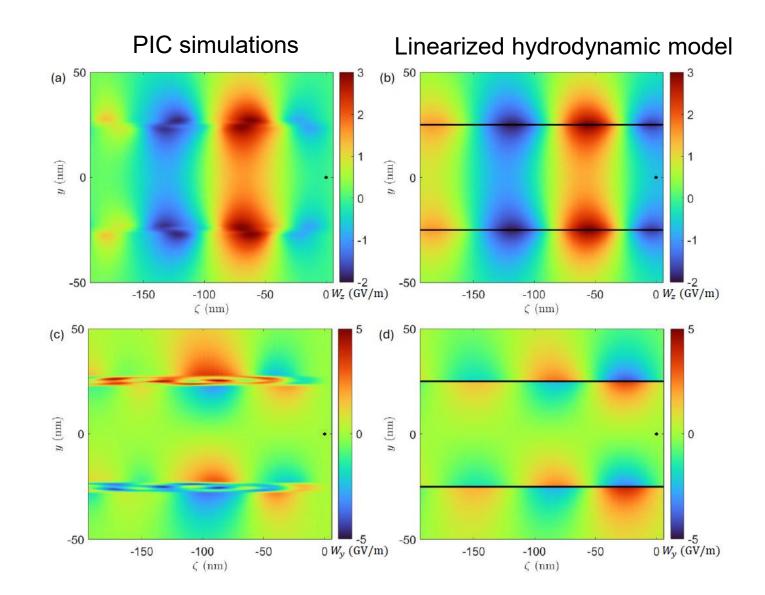

$$n_0 = \frac{n_V w_t^{\text{eff}}}{2r_{\text{in}}} (2r_{\text{in}} + w_t^{\text{eff}})$$

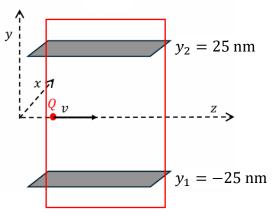
$$w_t^{\text{eff}} \le w_t$$


$$\lambda_p=rac{2\pi c}{\omega_p}$$
 is the plasma wavelength, where $\omega_p=\sqrt{e^2n_V/\varepsilon_0m_e}$ is the plasma frequency.

• Effective parameters. As it is expected, κ decreases and $w_{\rm t}^{\rm eff}$ increases with the wall thickness.

PIC simulations

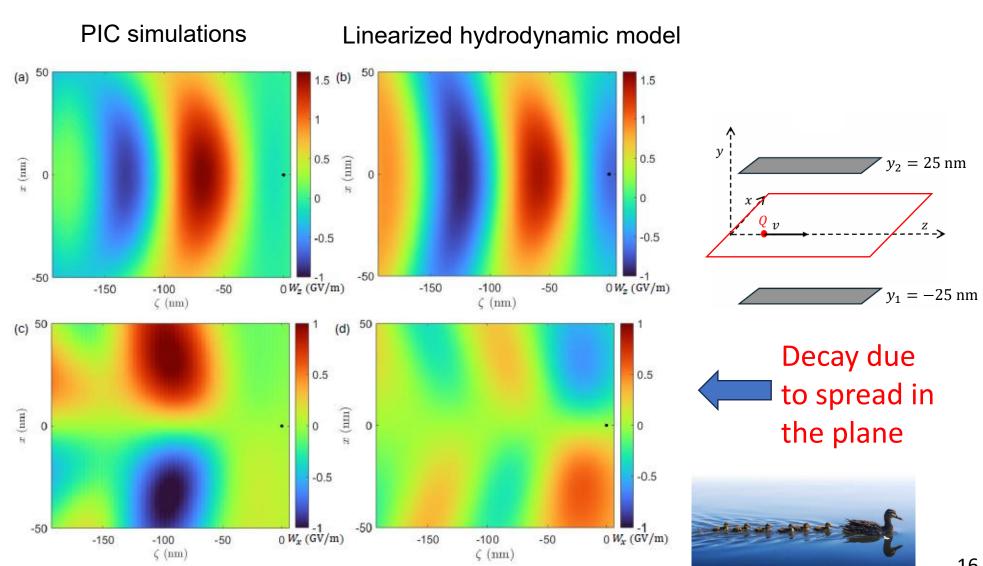

- WarpX [14] has been chosen to perform the simulations of the graphene layers
- Graphene layers are modelled as layers filled with a uniformly distributed, pre-ionized cold plasma of carbon ions and electrons
- Graphene layers will be centered at plane $y=y_j$ with a wall thickness w_t and a volumetric density $n_j=n_0/w_t$ in order to ensure that the number of free electrons within the jth layer with surface density $n_0=1.53\times 10^{20}~\rm m^{-2}$ in the LHM is equal to the number of free electrons in the wall thickness w_t
- We will consider a Gaussian proton beam as a driver, with $\sigma_x = \sigma_y = \sigma_z = 3$ nm, and charge Q = 1000e travelling between the graphene layers
- The simulations span a total duration of 9.5 fs, which is sufficient for wakefield excitation to occur

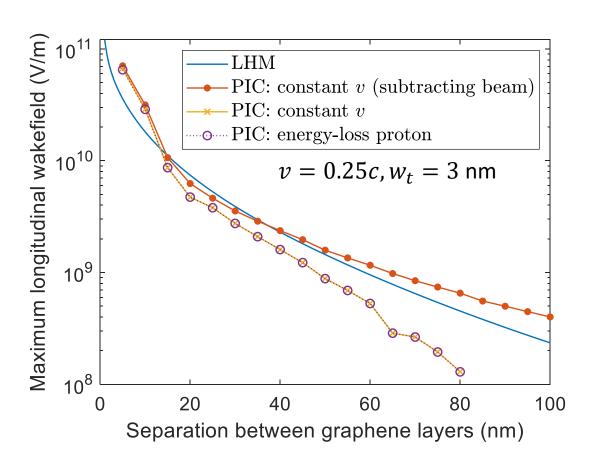


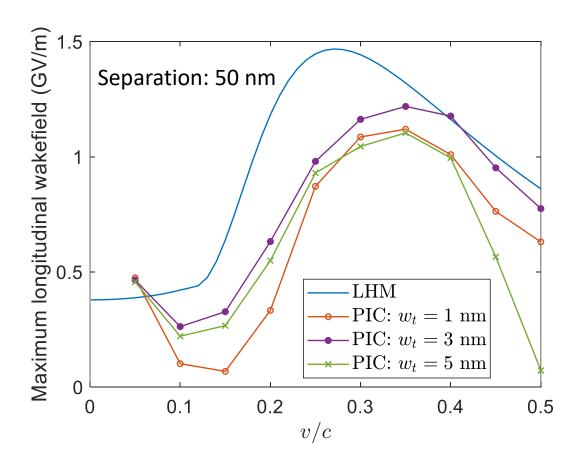
Comparison

Longitudinal wakefield

Transverse wakefield




Comparison


Longitudinal wakefield

Transverse wakefield

Comparison

In general, there is a good agreement between the PIC simulations and the linearized hydrodynamic model

5. Discussion

The discrepancies obtained between the linearized hydrodynamic model and the PIC simulations can be explained due to the differences between both approximations, such as:

- The **solid-state properties** cannot be taken into account in PIC codes, whereas these properties may be modelled with the parameters α , β , and γ in the linearized hydrodynamic model
- We are comparing a **3D region** with free electrons in PIC simulations with a **2D surface** in the linearized hydrodynamic model
- The electrons and carbon ions comprising the CNT can **move in 3D in PIC simulations**, whereas they are assumed to be confined over the surface in the linearized hydrodynamic model
- The **driver interacts** with the surrounding medium (losing energy) in PIC codes, whereas in the linearized hydrodynamic model we assume a **constant velocity**
- The size of the driver beam in the PIC simulations is not a point-like charge as assumed in the linearized hydrodynamic model

	LHM	PIC
Solid-state effects	YES (α, β, γ)	NO
Region with free electrons	2D	3D
Movement of CNT particles	2D	3D
Driver interaction	NO (constant v)	YES
Driver beam size	point-like	bi-Gaussian

6. Conclusions and outlook

- We have compared the excited wakefields in carbon nanostructures using the linearized hydrodynamic model and PIC simulations
- The amplitude of the longitudinal wakefield follows a similar trend in the linearized hydrodynamic model and PIC simulations
- The agreement in the amplitude of the wakefield in CNTs is much better if we consider an
 effective density
- The linearized hydrodynamic model can be used to obtain an estimation of the amplitude of the wakefield in hollow plasmas with small wall thickness instead of performing timeconsuming PIC simulations
- Further investigations employing a different approximation to relate the surface and volumetric density and scanning in other key parameters are ongoing

Acknowledgments

• This work is supported by Ministerio de Universidades (Gobierno de España) under grant number FPU20/04958 and the Generalitat Valenciana under grant number CIDEGENT/2019/058.

References

- P Martín-Luna et al, "Excitation of wakefields in carbon nanotubes: a hydrodynamic model approach" 2023 New J. Phys. 25 123029, https://doi.org/10.1088/1367-2630/ad127c
- P Martín-Luna *et al,* "Plasmonic Excitations in Carbon Nanotubes: PIC simulations vs Hydrodynamic Model", at Computational Fluid Dynamics Analysis, Simulations, and Applications. IntechOpen. DOI: 10.5772/intechopen.1006820
- P Martín-Luna et al, "Plasmonic excitations in graphene layers" 2025 Chin. J. Phys. 97 607-624, https://doi.org/10.1016/j.cjph.2025.03.030
- P Martín-Luna et al, "Excitation of Wakefields in Graphene Layers: PIC simulations vs Hydrodynamic Model", submitted to IntechOpen.

