Flash Talk - Updates to the KNTW Combination

2.00

ωη (3π+3π-)_{10 ω} (π+π-4π⁰)_{10 ω}

√s (GeV)

1.25

1.00

 10^{-4}

0.25

0.50

0.75

1.50

1.75

Flash Talk - Updates to the KNTW Combination

Aidan Wright

Science and Technology Facilities Council

LEVERHULME TRUST_____

The Muon Anomalous Magnetic Moment

- Dispersive approach to a_μ^{HVP} input experimental cross sections to dispersion integral.
- Significant unexplained tensions exist.
- Thorough new analysis ⇒ value that reflects full dispersive picture...

$$a_{\mu}^{\mathsf{HVP}} = rac{1}{4\pi^3} \int_{s}^{\infty} ds \Big\{ \sigma^0(s) \mathcal{K}_{\mu}(s) \Big\}$$

KNTW (and Code Rewrite) [10/23 - 11/24]

- Three dispersive HVP analysis groups:
 - CHKLS Dispersive (model indep.) fits in $2, 3\pi, 2K$ + radiative.
 - DHMZ All channels combinations: central values from spline averaging using local correlations.
 - KNTW ...
- KNTW maximally data driven, minimal modelling:
 - All non-defective data used
 - Radiative corrections from robust routines + FsQED.
 - Clustering dynamic data-driven combination.
 - Fitting incorporate full correlation information whilst avoiding bias.
 - Integration for $a_{\mu.e.\tau}^{\text{HVP, LO+NLO}}$ $\Delta \alpha_{\rm had}^{(5)} (M_Z^2)$, VP routine, etc.
- This talk/my PhD: updates and improvements...

- Code rewrite FORTRAN \rightarrow Python.
- 'Database' .txts → SQLite.
- Very minor bug fixes.
- Code still runs < 1 minute.

<ロト <部ト < 重ト < 重ト

KNTW Re-Baselining [07/24 - 05/25]

"Re-Baselining"

- (Minor) Corrections of KNT19 analysis:
 - Checks of database against literature.
 - More detailed systematic covariance matrix construction
- Completions of KNT19 analysis features:
 - Lagrange polynomial interpolation of all resonances
 - Exclusive/inclusive transition region.
- Estimates of KNT19 method systematics:
 - Two unfixed aspects of procedure.
 - \bullet Systematics would be $\sim 4.3\%$ of KNT19 squared error budget.

Breakdown of the re-baselined KNTW squared error

Flash Talk - KNTW

Correlations Study [01/25 - 04/25]

- KNTW/DHMZ different correlation handling?
- Assess 'uncertainties on uncertainties' with decorrelation procedure for systematics:

$$\tilde{C}_{ij} = \frac{\alpha}{\alpha} C_{ij} + (1 - \frac{\alpha}{\alpha}) \operatorname{diag} \left[C_{ij} \right].$$

- Blue line does not replicate DHMZ etc.
- Use to estimate systematic uncertainty:

$$d^{
ho} a_{\mu}^{\pi^+\pi^-} = \pm 1.68 << d^{\mathsf{KLOE/BaBar}} a_{\mu}^{\pi^+\pi^-};$$

extension to all channels $=\pm 1.95$.

- Implication (green line) need to vary stat. and syst. or 'KLOE favoured'.
- Difference driven by BaBar statistics fits naturally favour low precise KLOE.
- More advanced decorr.s possible but this provides an ~upper bound uncertainty.

arXiv2509.XXXXX potentially...

New KNTW Analysis [06/25 - now]

 Avoid biases during new analysis using blinding kernel:

$$a_{\mu}^{\mathsf{blind}}[i] = \frac{1}{4\pi^3} \int_{s_{th}}^{\infty} ds \Big\{ \sigma_i^0(s) K_{\mu}(s) B_i(s) \Big\}$$
 $B_i(s) = \pm b_i (s + s_{0.i})^{c_i}$

for each channel i. Generated by seeds held by Mark Lancaster.

- New analysis features:
 - 1. Improved FSR correction routines:
 - a) $\pi^{+}\pi^{-}$
 - b) $\checkmark K^+K^-, K_5^0K_L^0 \checkmark$
 - c) $\pi^{+}\pi^{-}\pi^{0}$.
 - d) ✓ Inclusive channel ✓
 - 2. VP routine narrow resonance handling, •uncertainty estimates•.
 - 3. New combination procedure trials.
 - 4. Inclusion of new datasets.
 - 5. Channel correlations(?); other minor considerations.

\implies KNTW27?

New analysis so far...

- Revisited $K\bar{K}$ confident in KNT19 conclusions for scan experiments.
- Inclusive channel (grey band):
 - Improve 1% syst. with $q \bar{q}$ treatment.

$$R_{(\gamma)} = \left(1 + rac{lpha}{\pi} \sum_{\mathsf{q} = \mathsf{uds}(\mathsf{c})} Q_q^2 \eta^{(f)}(s, m_q^2) \right) R$$

- Datasets often FSR inclusive, hard correction needed for four datasets.
- Estimated 20% drop in $\Delta \alpha_{\rm had.}^{(5)}(M_Z^2)$ uncertainty!

• Looking at 3π FSR w/ MH - ongoing...

A. Wright Flash Talk - KNTW 7