

LEVERHULME TRUST_____

Before physics

LEVERHULME TRUST_____

Before physics

After physics

LEVERHULME TRUST _____

Before physics

In between Maybe physics didn't do a too bad job

After physics

elia.bottalico@liverpool.ac.uk Department of Physics, The Oliver Lodge, Oxford St, Liverpool L69 7ZE

About me:

- Graduation in Physics (University of Pisa);
- Master in High Energy Particle Physics (University of Pisa);
- Ph.D title "Beam Dynamics corrections in the measurement of the anomalous precession frequency at the Muon g-2 experiment at Fermilab" (University of Pisa).

Past experiences:

- Member of the EDI committee;
- Run Coordinator for Run-5 and Run-6 at the g-2 experiment;
- Convener of the Beam Dynamics corrections analysis during Run-2/3.

Hobbies:

Play the guitar, read books, watch movies and eat (a lot obj

LEVERHULME TRUST _____

- Most of my career has been spent working on the Muon
- g-2 experiment at Fermilab.
- I worked on several aspects:
 - Developing the Long Term Gain correction, based on a state-of-art laser system;
 - Investigating a new systematic that heavily impacted Run-1 results;
- In the past 2 years:
 - Studying the <u>data-simulation agreement</u>;
 - Leading the analysis of 2 beam dynamics corrections
 - Analysis coordinator of beam dynamics analysis.

- The formula shows the R'_{μ} calculation to extract a_{μ} .
- The corrections applied to the measured anomalous precession frequency ω_a^m are necessary to get an unbiased a_μ result.

Beam dynamics corrections
$$R'_{\mu} \approx \frac{f_{clock}\omega_{a}^{m}(1+C_{e}+C_{p}+C_{ml}+C_{pa}+C_{dd})}{f_{calib}} < \omega'_{p}(x,y,\phi) \times M(x,y,\phi) > (1+B_{k}+B_{q})$$

The total beam dynamics correction applied in Run-456 is: 515 ppb with a systematic of 42 ppb

- The formula shows the R'_{μ} calculation to extract a_{μ} .
- The corrections applied to the measured anomalous precession frequency ω_a^m

are necessary to get an unbiased
$$a_{\mu}$$
 result. My work
$$R'_{\mu} \approx \frac{f_{clock}\omega_{a}^{m}(1+C_{e}+C_{p}+C_{ml}+C_{pa}+C_{dd})}{f_{calib}<\omega_{p}'(x,y,\phi)\times M(x,y,\phi)>(1+B_{k}+B_{q})}$$

The total beam dynamics correction applied in Run-456 is: 515 ppb with a systematic of 42 ppb

About research - C_e

• The formula represents the anomalous precession frequency:

$$\vec{\omega}_{a} = \frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) (\vec{\beta} \times \vec{E}) - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right]$$

• In the g-2 experiment we choose the energy of the muon to satisfy the

relation:
$$\gamma = \sqrt{1 + \frac{1}{a_{\mu}}} \approx 29.3$$
 equivalent to a $p_{\mu} = 3.094$ Gev/c

• However, not all the muons are at the magic momentum, so some residual \vec{E} affects the muon beam.

Higher momentum muons:

- stored at larger radii
- take longer to go around

Lower momentum muons:

- stored at smaller radii
- take shorter to go around

Dephasing and **radial position** used to extract the stored momentum spectrum

About research - C_e

In E821 and Run-1 we used the CERN method to extract the electric field

correction, building the χ^2 from the Fast rotation signal:

About research - C_{pa} LEVERHULME

- The measured g-2 phase of the muon is decay vertex position dependent.
- It is obtained as weighted average of the phases measured by each (x,y) pair position.

$$N_2(t) = N_{02}e^{-t/\tau} \left[1 + A_2 \cos(\omega_a t + \phi_2) \right]$$

$$N_1(t) = N_{01}e^{-t/\tau} \left[1 + A_1 \cos(\omega_a t + \phi_1) \right]$$

$$N(t) = N_1(t) + N_2(t) = N_{\Sigma}e^{-t/\tau} \left[1 + A_{\Sigma}\cos(\omega_a t + \phi_{\Sigma}) \right]$$

$$\phi_{\Sigma} = \arctan \frac{N_{01} A_1 \sin(\phi_1) + N_{02} A_2 \sin(\phi_2)}{N_{01} A_1 \cos(\phi_1) + N_{02} A_2 \cos(\phi_2)}$$

About research - C_{pa}

Simulation

$$\varphi_0^{c_k}(t) = \arctan \frac{\sum_{ij} M_{T,k} (x_i, y_j, t) \cdot \varepsilon_{c,k} (x_i, y_j) \cdot A_k (x_i, y_j) \cdot \sin (\varphi_{0,k} (x_i, y_j))}{\sum_{ij} M_{T,k} (x_i, y_j, t) \cdot \varepsilon_{c,k} (x_i, y_j) \cdot A_k (x_i, y_j) \cdot \cos (\varphi_{0,k} (x_i, y_j))}$$

I had also the possibility to participate to many conferences:

- Beauty 2023 Clermont-Ferrand (France);
- EINN 2023 Paphos (Cyprus);
- Theory Initiative 2024 Tsukuba (Japan);
- Shanghai Workshop 2025 Shanghai (China);
- EPS 2025 Marseille (France);

...But also to explore the world!

- Beauty 2023 Clermont-Ferrand (France);
- EINN 2023 Paphos (Cyprus);
- Theory Initiative 2024 Tsukuba (Japan);
- Shanghai Workshop 2025 Shanghai (China);
- EPS 2025 Marseille (France);

...And delicious food!!!

- Beauty 2023 Clermont-Ferrand (France);
- EINN 2023 Paphos (Cyprus);
- Theory Initiative 2024 Tsukuba (Japan);
- Shanghai Workshop 2025 Shanghai (China);

EPS 2025 – Marseille (France);

Look at the future!

- Looking at the future, nice projects are brewing:
 - The MUonE experiment who aims to measure the a_{μ}^{HLO} a 0.3% stat precision.

 The Muon g-2/EDM J-PARC experiment who aims to measure the g-2 at similar precision to Fermilab experiment.

Thanks a lot!