

LEVERHULME TRUST _____

Flash talk - Riccardo

Leverhulme Physics Retreat Caer Beris Manor, 18 September 2025

What I've done in the past 2 years

What I intend to do in the upcoming year

Thanks for the attention

...a bit more in detail...

- Develop an alternative method to extract $a_{\mu}^{\text{HVP,LO}}$ from MUonE data
- MUonE analysis
 - Detector alignment
 - Tracking detectors efficiency and resolution
- Test Run 2023-24
 - DQM expert
 - Data taking shifts
- Test Run 2025
 - Run Coordinator
 - Coordinator of the BMS installation and operations

Ideal world: all the detector elements are placed *exactly* where they are supposed to be (based on the technical drawings)

Each detector is already where it is supposed to be → no need of applying any correction in the track reconstruction

Real world:

- Tolerancies in the components manufacturing and assembly
- The MUonE stations are independent rigid bodies: can have different angles one relative to the other

Real world:

- Tolerancies in the components manufacturing and assembly
- The MUonE stations are independent rigid bodies: can have different angles one relative to the other

When no corrections are applied to the track reconstruction:

Difference between the hit position on a given module and the position predicted by the track fitting (you are expected to see a peak around 0 µm)

2 steps procedure to recover the alignment

1) take dedicated measurements of the apparatus (laser survey / 3D scanner photogrammetry) to determine the actual detector position @80 µm

I worked on the analysis of these measurements, to extract a (x,y,z) position of each module + parameterise the orientation of the module (3 angles needed)

ModuleID	$x_{\text{offset}} \text{ [mm]}$	$y_{\text{offset}} [\text{mm}]$	$z_{ m module} [m mm]$	$\theta_{\rm offset}$ [mrad]	$\gamma_{\rm offset}$ [mrad]	α_{offset} [mrad]
0 (X)	1.405	0.094	166.420	4.564	-4.403	0.800
1 (Y)	-0.407	0.970	204.743	1.146	-0.020	1.019
2 (U)	-1.138	0.231	537.205	2.353	-2.034	4.009

2 steps procedure to recover the alignment

1) take dedicated measurements of the apparatus (laser survey / 3D scanner photogrammetry) to determine the actual detector position @80 µm

X_{track} – X_{hit} improves...

2 steps procedure to recover the alignment

2) software alignment: use a sample of events where a single non-interacting muon passes through all the detectors to determine precisely their position (the outcome of step 1 is the starting point)

Numerical minimisation of the residuals x_{track} – x_{hit} . The fit parameters are the corrections to apply to the position of each module in order to take into account his misalignments in the track reconstruction

$$\chi^{2}_{\text{align, module-}j} = \sum_{i=0}^{N_{\text{tracks}}} \left(\frac{x_{\text{Track}}^{ij}(\vec{p_{j}}) - x_{\text{Hit}}^{ij}}{\sigma_{\text{Hit}}^{j}} \right)^{2}$$

Fit parameters:

(x, y) position of the module 2 angles for the module orientation The z position and the 3rd angle are still not included (weak effect on the track reco)

x_{track} – x_{hit} after the full procedure

2S modules resolution

Test Run 2025 – BMS installation

Test Run 2025 - BMS installation

Ready to take data!

...a bit more detailed wishlist for next year...

- Technical publications for the MUonE alignment and detector performance
- Significant progress in the MUonE data analysis
- Preliminary results from the BMS
- Technical publication on the BMS hardware
- Improvements of the BMS hardware

