Monte Carlo Techniques

- -> Monte Carlo is a set of techniques for dealing with randomness
- -> aim is to sample from a probability distribution that we can calculate (like a differential cross section)
- -> Assumption: we have a uniform random number generator between 0 and 1

We have a function f(x) > 0

Method 2: not integrable by hand

Method 1: if we know the integral

If f(x) can be indefinitely integrated, F(x), and the inverse function found, $F^{-1}(x)$, then

$$\int_{x_{\min}}^{x} f(x) \, \mathrm{d}x = R \int_{x_{\min}}^{x_{\max}} f(x) \, \mathrm{d}x$$

$$\implies x = F^{-1}(F(x_{\min}) + R(F(x_{\max}) - F(x_{\min}))$$

Given two random numbers R_1 and R_2 , if we know $f(x) \leq f_{\text{max}}$ in the allowed x range:

- 1. select a uniform $x = x_{\min} + R_1(x_{\max} x_{\min})$
- 2. if $f(x)/f_{\text{max}} \leq R_2$, reject this x and goto 1
- 3. else, retain the generated x value

Method 3: better efficiency than method 2

Assume an overestimate function $g(x) \ge f(x)$ over the allowed x region, where G(x) and its inverse are known.

- 1. select an x according to the distribution g(x), using method 1, i.e. $x = G^{-1}(G(x_{\min}) + R_1(G(x_{\max}) G(x_{\min}))$
- 2. Hit and miss: if $f(x)/g(x) \leq R_2$, reject this x and goto 1
- 3. else, retain the generated x value

Can also split g(x) up into different functions if f(x) is more complicated