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Testing The SM

• We have a model that predicts how particles behave.
• We need to test it as best we can and make Discoveries!
• How do we get from theory to result in particle physics?

• Digitisation
• Particle 

Signatures
• Data 

Analysis

• Physics 
Processes

• Interaction 
with matter.
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Interactions with Matter; Our Toolkit.
• Particle enters some material.
• What happens?
• How can we utilise that to build a detector.
• Can we optimise to look for certain physics.
• Let's build up a toolkit.

Interaction

Build a 
Detector



Ionisation in Material

• Did a charged particle pass through 
our detector material?

• If we pick the right material, we can 
ionise it by exciting the detector 
volume along the particle path.

• Free electrons are produced.
• We can cause the free charge to drift 

using an electric field.
• If our volume is big enough and has 

timing information, collecting charge 
allows us to reconstruct the particle 
track.

• We have a time projection chamber.
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• There are now many different TPCs 
that use different material interactions 
to create free charge that they can 
measure.

• Dune is a large-scale neutrino 
experiment that is currently being built 
in South Dakota.

• It will be filled with a huge(!) volume of 
liquid argon.

• When a neutrino bumps into an argon 
atom’s core, it produces particles that 
knock loose electrons in the liquid 
argon.

• Proto-Dune is based at CERN.

Time Projection Chambers - Dune



Time Projection Chambers – Dark Matter

• Dark Matter Physicists are looking for 
dark matter particle candidates 
called WIMPs, weakly interacting 
massive particles.

• This through ionisation by nuclear 
recoil.

• One DM TPC Experiment is Lux 
Zeppelin.

• Detector medium is liquid xenon.
• Also in a mine in south Dakota…



Bethe-Bloch Equation
• Instead of particles passing through a medium can we stop them?
• Is there a general formula for relativistic charged particles in heavy 

material?
• We can use the Bethe-Bloch Equation:

• Z atomic number
• I is the average energy required to ionize the medium
• Bethe-treatment is accurate to 1% down to 𝜷≈0.05, 

below that there is no accurate theory. Even further 
below, non-ionizing nuclear recoils dominate.

• At ultra-relativistic energies, radiative losses 
become important.
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Electromagnetic Showers

• An electromagnetic shower begins when a high-
energy electron, positron or photon enters a 
material.

• Photons interact via pair production -> e+ e-.

• Electrons and positrons interact via 
Bremsstrahlung.

• Bremsstrahlung is the emission of photons 
produced by the deceleration of an electron when 
deflected by atomic nuclei.

• leads to a cascade of particles of decreasing energy 
until photons fall below the pair production 
threshold.
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Hadronic Showers
• Hadronic showers are initiated by 

the hard collision of an incident 
hadron with a nucleus. 

• Neutral pions decay into 2 
photons and begin EM Showers.

• Typically more difficult to 
understand the geometry of than 
EM Showers.

• Need more material capture the 
full shower.
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Calorimetry

• Once you have a shower you need to 
measure It.

• Calorimeters are either Homogeneous or 
sampling.

• Homogeneous Calorimeters: absorbing 
material is also the sampling material.

• Sampling Calorimeters: Absorbing material  
and sampling material are layered.

• Sampling Material e.g Plastic or crystal 
scintillators, liquid noble gas ionization 
chambers.

• EM and Hadronic calorimetry used in all 
General-purpose collider detectors.
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• In a medium.
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The Cherenkov Effect

• Can we measure it?
• Measure light with Photomultiplier 

tubes (PMTs).
• Take an incoming photon and multiply 

its signal with a series of increased 
voltages.

• Sometimes LOTs like at Super 
Kamiokande in Japan.
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Silicon Tracking
• Charged particles collide with silicon atoms, liberating 

electrons and creating an electric current.
• Semiconductor: Low energy across band gap.
• High mobility, fast charge collection.
• Usually set out an array of silicon pixels to map charged 

particle tracks.
• Bend charged particles through magnetic field to get their 

momentum.
• Used in loads of Collider experiments and fixed target 

experiments like Mu3e.



Silicon Tracking
• Charged particles collide with silicon atoms, liberating 

electrons and creating an electric current.
• Semiconductor: Low energy across band gap.
• High mobility, fast charge collection.
• Usually set out an array of silicon pixels to map charged 

particle tracks.
• Bend charged particles through magnetic field to get their 

momentum.
• Used in loads of Collider experiments and fixed target 

experiments like Mu3e.



Silicon Tracking
• Charged particles collide with silicon atoms, liberating 

electrons and creating an electric current.
• Semiconductor: Low energy across band gap.
• High mobility, fast charge collection.
• Usually set out an array of silicon pixels to map charged 

particle tracks.
• Bend charged particles through magnetic field to get their 

momentum.
• Used in loads of Collider experiments and fixed target 

experiments like Mu3e.



Silicon Tracking
• Charged particles collide with silicon atoms, liberating 

electrons and creating an electric current.
• Semiconductor: Low energy across band gap.
• High mobility, fast charge collection.
• Usually set out an array of silicon pixels to map charged 

particle tracks.
• Bend charged particles through magnetic field to get their 

momentum.
• Used in loads of Collider experiments and fixed target 

experiments like Mu3e.



Silicon Tracking
• Charged particles collide with silicon atoms, liberating 

electrons and creating an electric current.
• Semiconductor: Low energy across band gap.
• High mobility, fast charge collection.
• Usually set out an array of silicon pixels to map charged 

particle tracks.
• Bend charged particles through magnetic field to get their 

momentum.
• Used in loads of Collider experiments and fixed target 

experiments like Mu3e.



Radiation Hardness
• We want our detectors to last a long time.
• How do they hold up with all the ionisation 

radiation?
• Electrical and detector components will 

deteriorate over time.
• Silicon chips are susceptible, and pixels 

sometimes suffer from drop out.
• We are aware of this deterioration and make 

replacements when necessary.
• Components are sent off to smaller 

acceleration rings to be irradiated and 
tested for radiation ageing – Cyclotron at 
Birmingham.



Radiation Hardness
• We want our detectors to last a long time.
• How do they hold up with all the ionisation 

radiation?
• Electrical and detector components will 

deteriorate over time.
• Silicon chips are susceptible, and pixels 

sometimes suffer from drop out.
• We are aware of this deterioration and make 

replacements when necessary.
• Components are sent off to smaller 

acceleration rings to be irradiated and 
tested for radiation ageing – Cyclotron at 
Birmingham.



Radiation Hardness
• We want our detectors to last a long time.
• How do they hold up with all the ionisation 

radiation?
• Electrical and detector components will 

deteriorate over time.
• Silicon chips are susceptible, and pixels 

sometimes suffer from drop out.
• We are aware of this deterioration and make 

replacements when necessary.
• Components are sent off to smaller 

acceleration rings to be irradiated and 
tested for radiation ageing – Cyclotron at 
Birmingham.



Radiation Hardness
• We want our detectors to last a long time.
• How do they hold up with all the ionisation 

radiation?
• Electrical and detector components will 

deteriorate over time.
• Silicon chips are susceptible, and pixels 

sometimes suffer from drop out.
• We are aware of this deterioration and make 

replacements when necessary.
• Components are sent off to smaller 

acceleration rings to be irradiated and 
tested for radiation ageing – Cyclotron at 
Birmingham.



Radiation Hardness
• We want our detectors to last a long time.
• How do they hold up with all the ionisation 

radiation?
• Electrical and detector components will 

deteriorate over time.
• Silicon chips are susceptible, and pixels 

sometimes suffer from drop out.
• We are aware of this deterioration and make 

replacements when necessary.
• Components are sent off to smaller 

acceleration rings to be irradiated and 
tested for radiation ageing – Cyclotron at 
Birmingham.



Fixed target Vs Collider
• What is a detectors purpose, is it specific 

or general.
• The LHC works at the energy frontier – 

this can only be reached with colliding 
bunches of particles head on. 

• Fixed target has lower energies, but you 
can reach higher luminosities.

• More events means you can search for 
rarer decays.

• E.g Na62 an ultra-rare kaon decay 
experiment looking for decays of order 
10e-12.
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