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About Me

* Born and raised in south London. X Fau
* Undergrad/Mphys in Edinburgh. | ol

e Started PhD at the university of
Liverpool in October 2022.

 Was based at CERN for my second year ! H.W-w
of PhD. -

* Researcher on LHCb Looking at purely
baryonic decays and neutrons.
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Testing The SM

* We have a model that predicts how particles behave.
* We need to test it as best we can and make discoveries!
* How do we get from theory to result in particle physics?
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What Can We See?

* What do we mean by “seen in the detector”?
 Atthe LHC we cannot observe particle processes in real time by eye.

* Through interactions with matter the particles leave behind footprints/
signatures that we can use to deduce what happened
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Interactions with Matter; Our Toolkit.

* Particle enters some material.

* What happens?

* How can we utilise that to build a detector.
* Can we optimise to look for certain physics.
* Let's build up a toolkit.

» Build

Detector |

Interaction
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lonisation in Material

* Did a charged particle pass through Anode
our detector material? 0066660 F
* If we pick the right material, we can Charged
ionise it by exciting the detector Particle

volume along the particle path.
* Free electrons are produced.

* We can cause the free charge to drift
using an electric field.

* If our volume is big enough and has
timing information, collecting charge cathode
allovléls us to reconstruct the particle
track.

* We have a time projection chamber.

Detector Volume




Time Projection Chambers - Dune

* There are now many different TPCs
that use different material interactions
to create free charge that they can
measure.

* Dune is a large-scale neutrino
experiment thatis currently being built
in South Dakota.

* |t will be filled with a huge(!) volume of
liquid argon.

* When a neutrino bumps into an argon
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* Dark Matter Physicists are looking for
dark matter particle candidates
called WIMPs, weakly interacting
massive particles.

* This through ionisation by nuclear
recoil.

* One DM TPC Experiment is Lux
Zeppelin.

Dark Matter Standard Model

Particles Particles

 Detector medium is liquid xenon.
* Also in a mine in south Dakota...
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* Is there a general formula for relativistic charged particles in heavy
material?

* We can use the Bethe-Bloch Equation:
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below, non-ionizing nuclear recoils dominate.

* Atultra-relativistic energies, radiative losses
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Bethe-Bloch Equation

* Instead of particles passing through a medium can we stop them?

* Is there a general formula for relativistic charged particles in heavy
material?

* We can use the Bethe-Bloch Equation:
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Hadronic Showers

* Hadronic showers are initiated by
the hard collision of an incident
hadron with a nucleus.
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Hadronic Showers

Hadronic showers are initiated by

the hard collision of an incident
hadron with a nucleus.

Neutral pions decay into 2
photons and begin EM Showers.

Typically more difficult to

understand the geometry of than

EM Showers.

Need more material capture the
full shower.
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* Once you have a shower you need to
measure It.

* Calorimeters are either Homogeneous or
sampling.

* Homogeneous Calorimeters: absorbing
material is also the sampling material.

 Sampling Calorimeters: Absorbing material
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scintillators, liquid noble gas ionization
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Calorimetry

* Once you have a shower you need to
measure It.

* Calorimeters are either Homogeneous or
sampling.

* Homogeneous Calorimeters: absorbing
material is also the sampling material.

 Sampling Calorimeters: Absorbing material
and sampling material are layered.

 Sampling Material e.g Plastic or crystal
scintillators, liquid noble gas ionization
chambers.

* EM and Hadronic calorimetry used in all
General-purpose collider detectors.

Incoming particle

Incoming particle

Shower of secondary particles

Passive absorber
Shower of secondary particles

Detectors

LHCDb
HCAL

-
,
(=
=
=
=
—
=
F= ]
pow—
—
=
;

.~
sy
‘ay
—

'
i

- ——



The Cherenkov Effect

* What happens when we exceed the speed of light...



The Cherenkov Effect

* What happens when we exceed the speed of light...
* |[n a medium.



The Cherenkov Effect

* What happens when we exceed the speed of light...
* |[n a medium.

* A charged particle will release Cherenkov radiations in the form of
a cone of photons.




The Cherenkov Effect

* What happens when we exceed the speed of light...
* |[n a medium.

* A charged particle will release Cherenkov radiations in the form of
a cone of photons.

1
* Angle depends on velocity of particle: cost = —

np




The Cherenkov Effect

* What happens when we exceed the speed of light...
* |[n a medium.

* A charged particle will release Cherenkov radiations in the form of
a cone of photons.

1
* Angle depends on velocity of particle: cosf = —
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e Can we measure it?

* Measure light with Photomultiplier
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e Can we measure it?

* Measure light with Photomultiplier
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* Take an incoming photon and multiply
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The Cherenkov Effect

e Can we measure it?

* Measure light with Photomultiplier
tubes (PMTs).

* Take an incoming photon and multiply
Its signal with a series of increased
voltages.

* Sometimes LOTs like at Super
Kamiokande in Japan.
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* Charged particles collide with silicon atoms, liberating
electrons and creating an electric current.

* Semiconductor: Low energy across band gap.
* High mobility, fast charge collection.
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Silicon Tracking

Charged particles collide with silicon atoms, liberating
electrons and creating an electric current.

Semiconductor: Low energy across band gap.
High mobility, fast charge collection.

Usually set out an array of silicon pixels to map charged
particle tracks.

Bend charged particles through magnetic field to get their
momentum.
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* Charged particles collide with silicon atoms, liberating e, . | [ s s | [ e e, O

electrons and creating an electric current.
* Semiconductor: Low energy across band gap.
* High mobility, fast charge collection.

* Usually set out an array of silicon pixels to map charged
particle tracks.

* Bend charged particles through magnetic field to get their
momentum.

* Usedin loads of Collider experiments and fixed target
experiments like Mu3e.
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Radiation Hardness

* We want our detectors to last a long time.

* How do they hold up with all the ionisation
radiation?
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Radiation Hardness

* We want our detectors to last a long time.
* How do they hold up with all the ionisation

radiation?

* Electrical and detector components will
deteriorate over time.

* Silicon chips are susceptible, and pixels
sometimes suffer from drop out.
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Phase-1 Pixel - Full depletion voltage vs days
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* We want our detectors to last a long time.

* How do they hold up with all the ionisation
radiation?
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e We are aware of this deterioration and make
replacements when necessary.
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Fixed target Vs Collider

* What is a detectors purpose, is it specific
or general.

* The LHC works at the energy frontier —
this can only be reached with colliding
bunches of particles head on.

* Fixed target has lower energies, but you
can reach higher luminosities.

* More events means you can search for
rarer decays.

* E.g Na62 an ultra-rare kaon decay
experiment looking for decays of order
10e-12.
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General Purpose at the LHC

* Example: slice of , . ;

Om

CMS detector. i

Electron

Charged Hadran {e.q. Pian)

* Not necessarily el (g Neuton
designed for specific X
decay.

* Hopefully, this image
makes more sense
than it did at the
beginning.

* Thanks! Questions?

through ChS
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