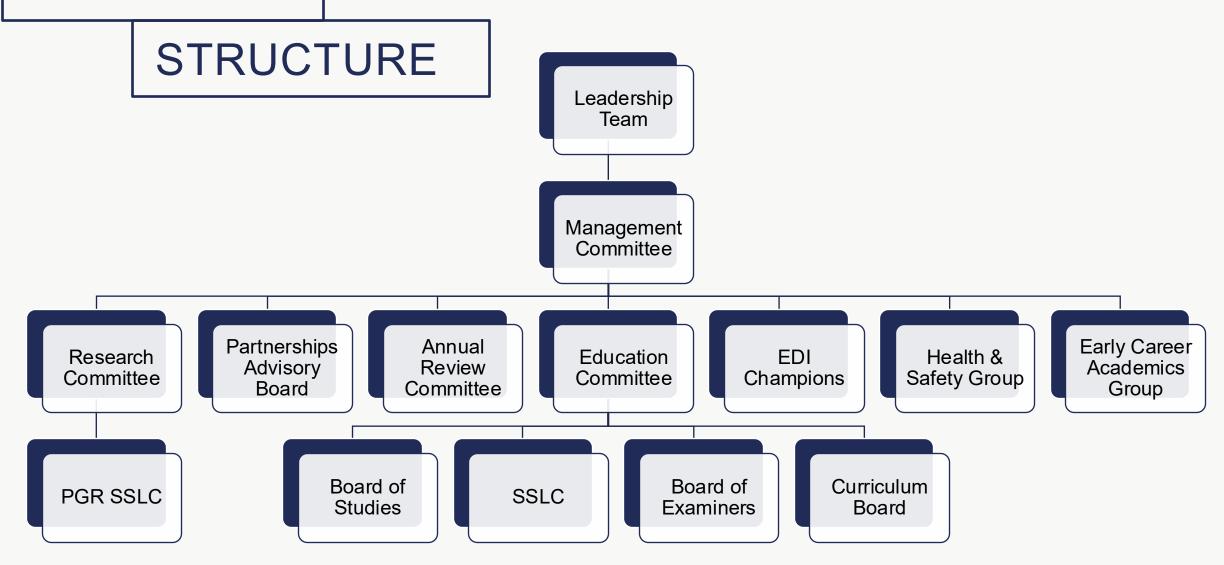


MATHEMATICAL SCIENCES

PDRA AWAY DAY OCTOBER 2025


Professor Daniel Colquitt Head of Department Department of Mathematical Sciences

MATHEMATICAL SCIENCES

ABOUT US

COMMITTEE

KEY

CONTACTS

Dan Colquitt

HoD

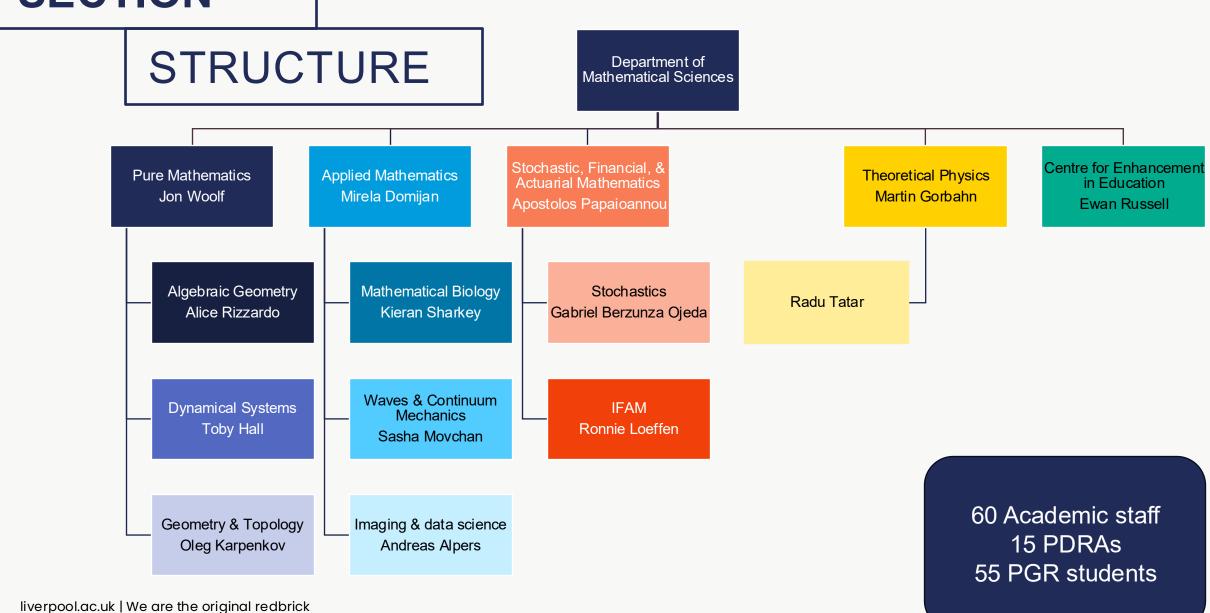
Thomas Teubner

Deputy HoD Research

Anna Pratoussevitch

Deputy HoD Education

Kieran Sharkey


Chair DMSRC

ECA

Lead

SECTION

APPLIED

MATHEMATICS

Mathematical Biology

- Variational modelling, nonlinear optimization (theory & algos); image restoration, segmentation & co-registration
- Population dynamics, epidemiology, evolution, systems biology & multi-scale modelling, biological fluid dynamics

Waves & Continuum Mechanics

 Partial differential equations, wave propagation and scattering, cloaking, metamaterials, material science "Our research is highly interdisciplinary and often finds application in a wide variety of fields from medical and healthcare, to the energy and oil industry, civil engineering, and geophysics. We have strong collaborative links with industry, other academic institutions, and NHS Trusts."

Currently funded research projects

MUSICA (Industry funding)

BATNav (EPSRC)

Multiphysical multiscale modelling (Leverhulme)

Training & Professional Development (Consultancy)

Optimal grain designs (EPSRC)

OxLiv Impact Assessment Modelling (CEPI)

Emmy Noether Fellowship (LMS)

Analytical tools for FFX studies (MRC)

Fluid induce Seismicity (RS)

PURE

MATHEMATICS

Three research groups

- Algebraic geometry
- Dynamical systems
- Geometry & Topology

Covering four areas of research

- Algebraic geometry
- Complex and topological dynamics
- Number and ergodic theory
- Hyperbolic geometry and singularity theory

"The unifying thread running through all three research groups is the power of multi-dimensional geometrical thinking in revealing and comprehending the structure of diverse phenomena in mathematics and its applications."

Notable highlights & projects

Highly international fundamental research

Distinguished academics (FRS, Learned society medals)

Recent resolution of longstanding Eremenko's Conjecture

Curve counting theory (EPSRC)

Leverhulme visiting Professorships

SF+A

MATHEMATICS

Stochastics + IFAM

- Probability theory, Applied probability, Mortality modelling
- Financial Inclusion, Social Finance, Actuarial mathematics
- Statistics, Stochastic analysis, uncertainty quantification

"Our goal is to understand, describe and analyse random phenomena and structures. More generally, we are interested in the mathematics of randomness.

We contribute to society by finding solutions to financial problems and influencing governments and policymakers. Become an international hub for actuarial and financial maths collaborations."

Currently funded research projects

Microfinance & Insurance (AIMS)

Emerging insurance markets (ILO & UN)

Extreme events – "Black Swans" (Pandemic Institute)

Mortality tables in emerging economies (BEAC)

THEORETICAL

PHYSICS

Strings + Particles

- Quantum Field Theory, Perturbative loop computations
- Precision Phenomenology, Lattice QFT, application of Al
- Dark Matter & Dark Energy, String theory compactifications,
- Supersymmetric theories, Black Hole physics & Cosmology

Particles: "Theoretical studies of the elementary particles and forces, developing testable theories which lie beyond the Standard Model of particle physics."

Strings: "We provide String Theory-inspired models related to fundamental questions in particle physics and cosmology"

Notable highlights

- STFC CG
- Two UKRI FLFs
- Direct collaborations with PP group and part of muon precision physics programme, funding from Leverhulme Int. Prof. Graziano Venanzoni)
- Particle Physics Frontier
- Leadership in DiRAC (High Performance Computing Facility), conf. Lattice2024 @ UoL
- Excellent success in securing external fellowships

RESEARCH

PRIORITIES

Increase research income

- Take advantage of momentum behind Data
 Science & AI maths underpins everything!
- Focus on leading or contributing to large multidisciplinary research projects
- Capitalise on Fellowship successes
- Horizon-scan for non-traditional funding routes
- Collaborate with industry, government, etc.

Increase overall output quality

- Revised output evaluation programme
- Focus on what really matters

Develop, document, & showcase impact

- Renewed focus on impact
- Everyone can contribute to impact
- Maths has a very long pipeline
- If unsure, document it
- Tell someone about it!

Sustainability of research groups

- Succession planning
- Fellowships are you applying?
- Income

SUPPORT &

OPPORTUNITIES

Get involved in departmental life!

- Research group meetings
- Seminars
- Colloquia
- Outreach
- ECA group

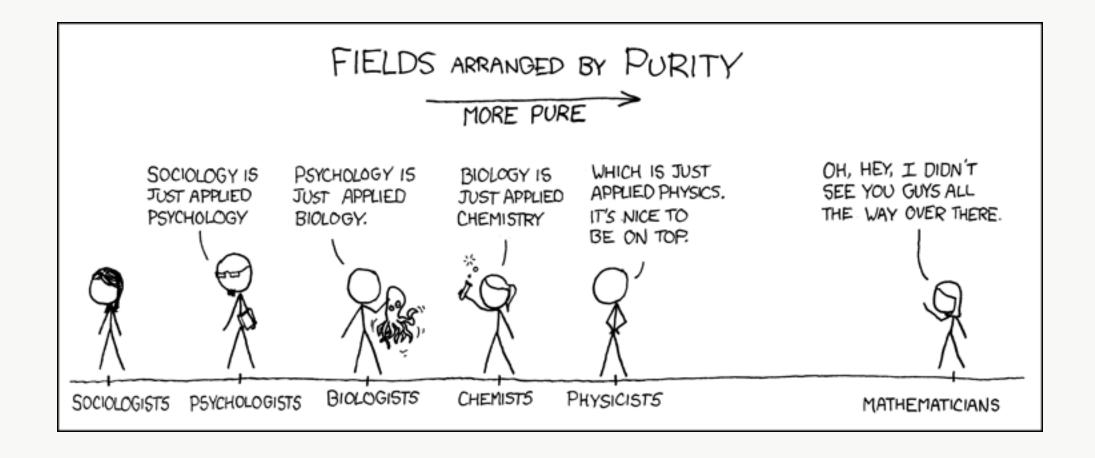
Funding applications

- Mentorship
- Technical & lay review
- Think about fellowships
- Speak with your section / group lead / PI

Broaden your horizons

- Maths underpins everything
- Unlikely that you will remain in precisely the same area for life
- Investigate links with research institutes, private sector, public sector, etc.
- Talk to people outside your field
- Say yes more

Training available


- The Academy
- Summer Schools
- Conferences, workshops, visits

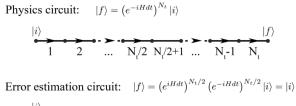
PDRA RESEARCH

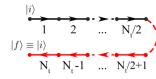
HIGHLIGHTS

MATHS IS

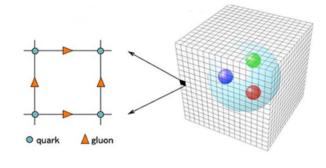
EVERYWHERE

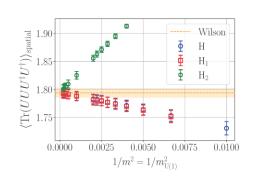
Emanuele Mendicelli (he/him)

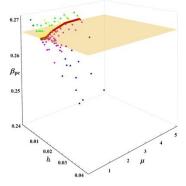

Research Interests:


Quantum Computing for Lattice Gauge Theories

Quantum computing


- Particle Simulations on Quantum Computers
- Time Evolution
- **Error Mitigation**
- **Quantum Variational Methods**





Lattice gauge theories

- Lattice Simulations for Particle Physics
- Phase Diagrams and Phase Transitions
- Lattice Formulations for Quantum Computing

Can we use routinely collected electronic healthcare record (EHR) data to inform personalised antibiotic selection to improve clinical outcomes for people living with Cystic fibrosis?

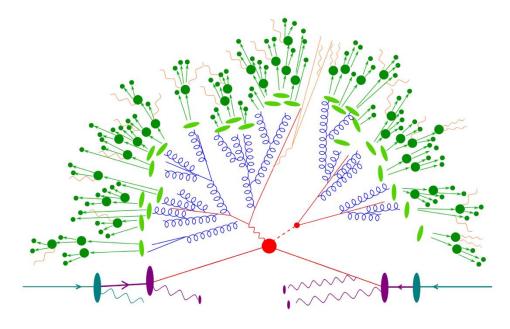
Project: Trailfinder CF Innovation Hub (WP2.2)

Dr. Shahi Dost

- Cystic fibrosis (CF) is a life-limiting genetic condition marked by chronic lung infections, inflammation, and extensive antibiotic use, especially intravenous antibiotics for acute exacerbations.
- Optimal treatment strategies for exacerbations are not well understood.
- The main objectives of my post-doctoral research are to develop machine learning (ML) and mathematical models that can predict treatment strategies for *people living with Cystic fibrosis* (pwCF).

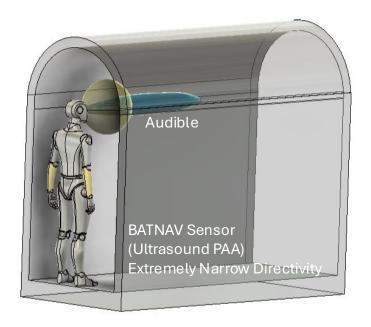
Research Questions:

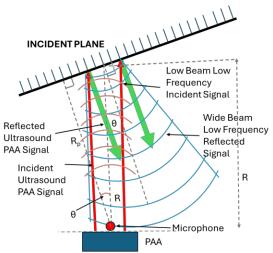
- 1. What is the optimal selection of antibiotics treatment for pwCF to improve clinical outcomes using machine learning (AI) models?
- 2. Can we predict the outcome of antibiotics treatment using artificial intelligence (AI)?
- 3. Can we predict the antimicrobial resistance caused by cystic fibrosis bacteria (e.g., Pseudomonas aeruginosa, Staphylococcus aureus) strains using AI?



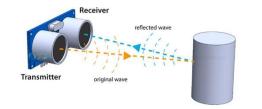
Lois Flower: Precision QED using Monte Carlo

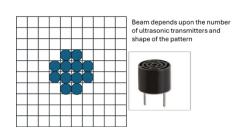
- Develop Monte Carlo event generators
 - Software to simulate particle collisions
 - Perturbative methods used for the electroweak interactions and for high-energy QCD
 - Non-perturbative modelling used for low-energy QCD, producing measurable hadrons
- Beneficial to include effects at all orders to describe multiple-photon exchange and emission


A schematic picture of a high-energy electron-positron collision, as modelled by a Monte Carlo event generator


• How does this affect theoretical predictions for e.g. the muon anomalous magnetic moment?

BATNAV SENSOR (PARAMETRIC ACOUSTIC ARRAY)

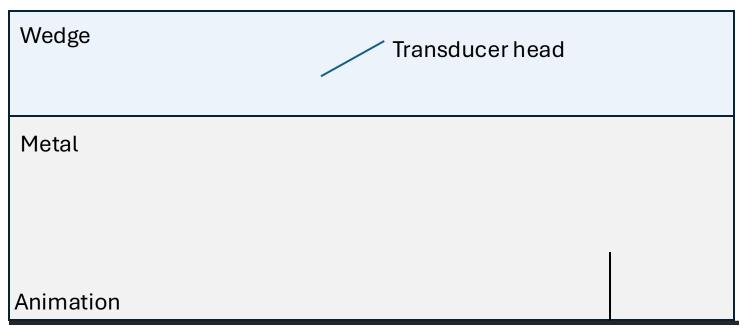


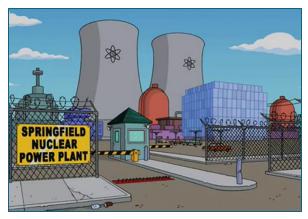

Overview

BATNAV sensing system incorporates a nonlinear ultrasonic acoustic technology to measure the distance of far located objects in critical conditions.

Key Work Done & Future Directions

- Review of literature on distance sensing using acoustics.
- Review of commercial and customized distance sensors using acoustic & ultrasonic waves.
- Broad design specifications and theoretical considerations of distance sensors using acoustic waves, ultrasonics (single sensor and parametric acoustic array (PAA))
- Broad design of different configurations of array of ultrasonic sensors suitable for PAA based BATNAV distance sensor
- Future directions is to simulate ultrasonic sensor in COMSOL, the propagation of ultrasonic waves in air as medium, its reflections and distance measurement in simulated environment in COMSOL.

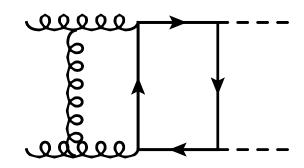


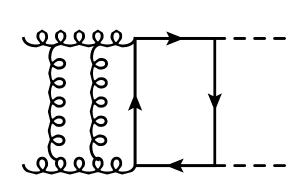

James Gaffney

- Cracks in nuclear power stations are bad news
- Ultrasound techniques are used to find, characterise and size cracks
- I simulate ultrasound to build a database to train an ML algorithm to sizes surface breaking cracks

Project: MUSICA
PI: Stewart Haslinger
Funder: RCNDE

https://www.energy.gov/ne/articles/7-things-simpsons-got-wrong-about-nuclear

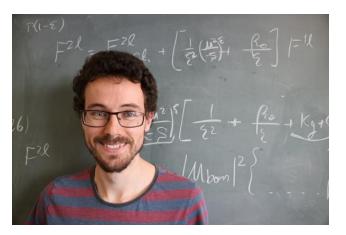



https://www.powermag.com/ultrasonic-testing-for-the-power-generation-industry/

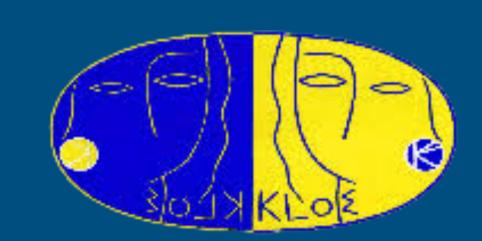
Josh Davies (TP)

Research Activities:

- Multi-loop QCD and EW amplitudes
 - AKA "Computations for LHC physics"
 - Higgs pair production at 2,3 loops
 - Deep-Inelastic Scattering at 3,4 loops
- Large-scale Computer Algebra problems
 - Integration-by-parts Reduction
 - Computer Algebra on HPC systems

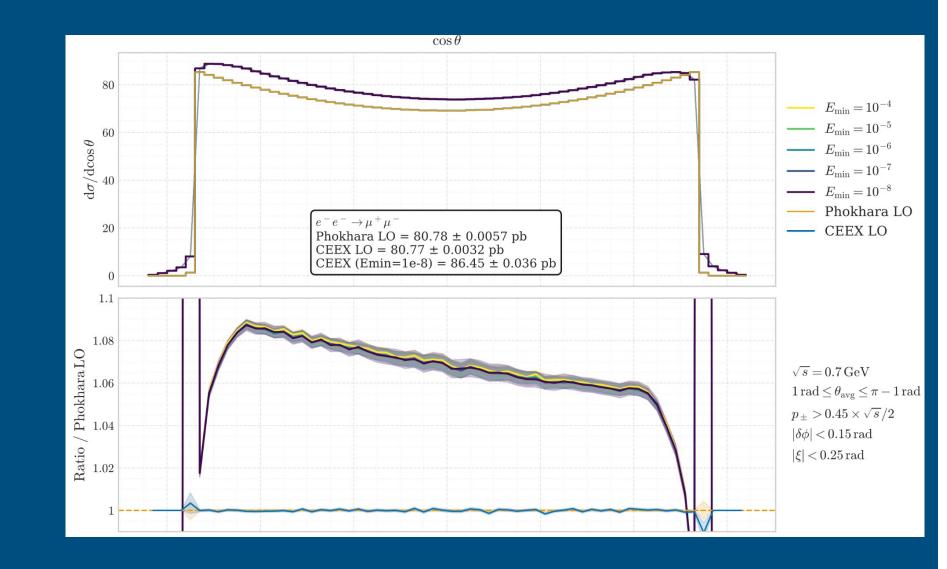


- Development of Computer Algebra software
 - o FORM: https://github.com/form-dev/form
 - Developers' Workshop 2025 (Liverpool)

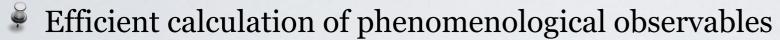


Motivation from the muon anomalous magnetic moment determination (g-2)

Monte-Carlo Studies for e+e- annihilation processes:


 Within the KLOE experiment collaboration: measurement of ee->pipi cross-section needs appropriate Monte-Carlo generators

 Within RadioMonteCarlow2: systematic studies of Monte-Carlo generators for relevant low-energy processes

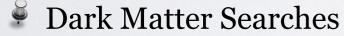


Resummation of soft-photon effects in QED processes: theory development and implementation

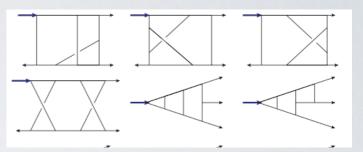
William J. Torres Bobadilla

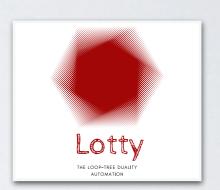
Research interests

- \rightarrow High energies ($pp \rightarrow H + \text{jets} @ \text{N3LO}$)
- \rightarrow Mixed QCD/EW corrections ($pp \rightarrow HH @ N3LO$)


- -> Unitarity & analyticity of S-matrix
- —> Loop-tree duality formulation

 \rightarrow Physics of $(g-2)_{\mu}$ via $e^+e^- \rightarrow$ hadrons


Main framework :: scattering amplitudes


- Effective Field Theory approach to General Relativity
 - → Post-Newtonian corrections to the Newtonian potential

- → Loop integrals arising in low-energy effective interactions
- Neural Network Techniques
 - → Fast exploration of mathematical and physical structures (e.g., bootstrapping of amplitudes)

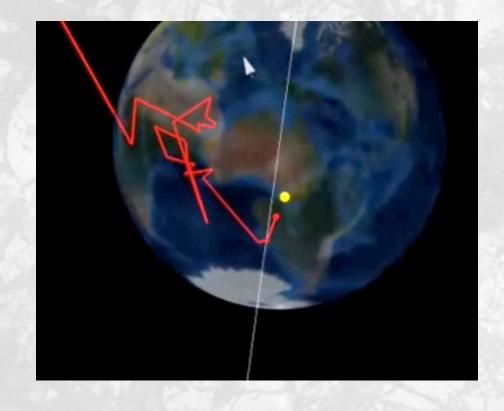
Tetiana Kozynets

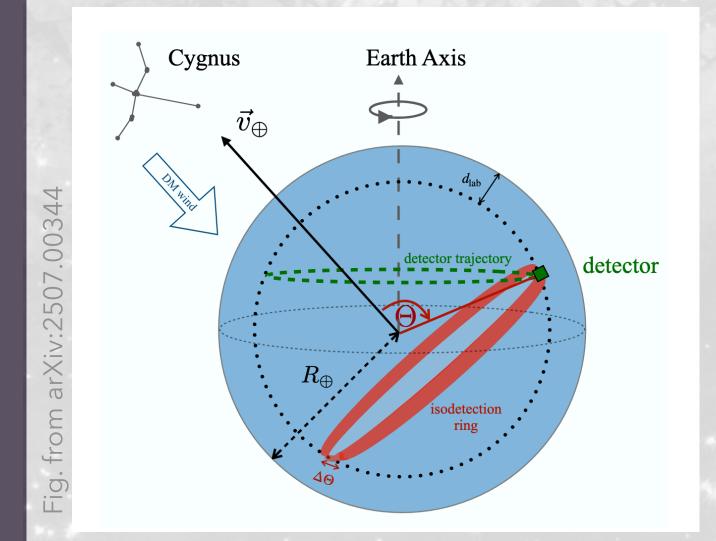
Goes by "Tania"

Part of the (

group

(PI: Juri Smirnov)


Research revolves around dark matter


Selected research directions

* Direct dark matter detection using superfluid ³He

 Development of dark matter propagation codes (diffusion through the Earth)

 Prediction of daily modulation signals due to dark matter wind anisotropy

Nick Rekuski

- Nick is a pure mathematician working in algebraic geometry. Algebraic geometry is the study of spaces defined by the vanishing of polynomial equations.
- His work focuses on the existence and nonexistence of stable vector bundles on these spaces. Such results have subtle geometric consequences and connections to other fields (such as string theory).
- In recent joint work, he gave such a nonexistence result on some spaces of interest called Calabi-Yau threefolds. This has led to significant progress on a conjecture from 2004.

ANY QUESTIONS?

Dan Colquitt
d.colquitt@liverpool.ac.uk

Thomas Teubner teubner@liverpool.ac.uk