

4th Liverpool Workshop on Muon Precision Physics, November 11-13, 2025

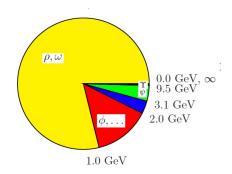
Status of R measurements at low-energy e^+e^- colliders

Achim Denig Institute for Nuclear Physics & HIM Johannes Gutenberg University Mainz

Outline

- Current situation data-driven HVP for (g-2)_μ
- Radiative corrections and ISR measurements
- Breaking news from Orsay September workshop
- Status of BESIII analysis of $e^+e^- \rightarrow \pi^+\pi^-$
- Conclusions

R Measurements and Hadronic Vacuum Polarization



Hadronic vacuum polarization

Anomalous magnetic moment of the muon (g-2),

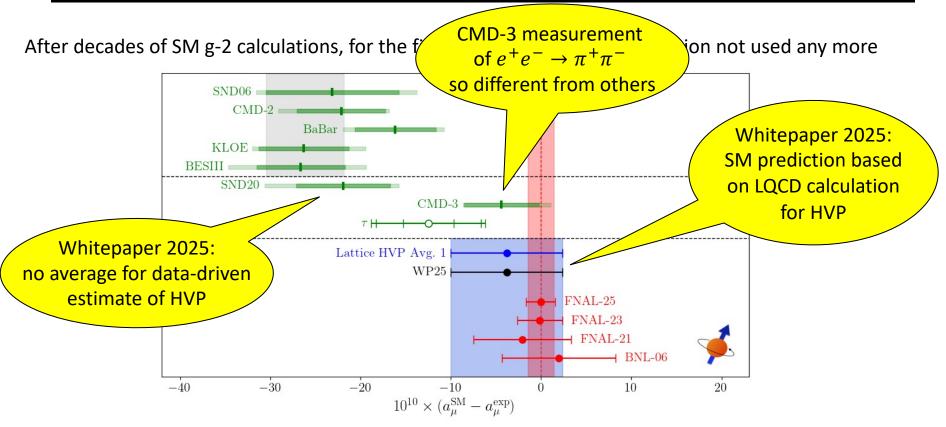
Anomalous magnetic moment of the muon (g-2)
$$_{\mu}$$

$$a_{\mu}^{HVP} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \ K(s) \ \boldsymbol{\sigma_{had}(s)}$$

→ relevant mass range < 2...3 GeV leading channel: $e^+e^- \rightarrow \pi^+\pi^-$ >70% contribution to a_u^{HVP}

$$\sigma_{had}(s) = \ \sigma_{tot}(e^+e^- o Hadrons)$$
 $R_{had} = \frac{\sigma_{had}(s)}{\sigma_{tot}(s)}$

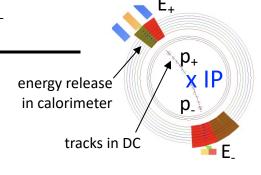
$$\alpha_{\rm em}(M_Z^2) = \frac{1}{1 - \Delta\alpha(M_Z^2)};$$

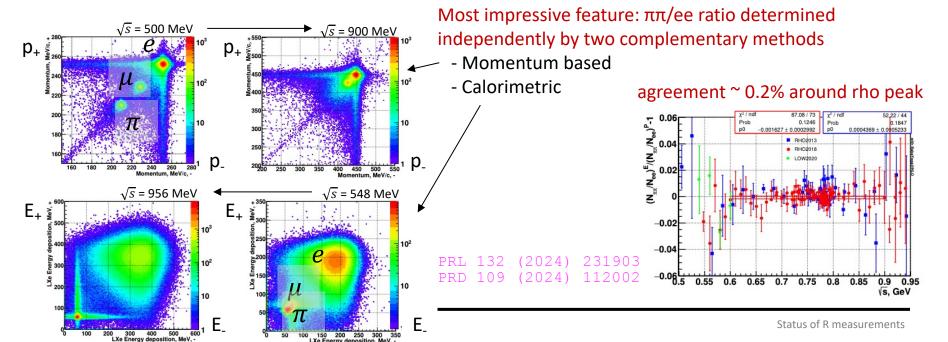

$$\Delta\alpha_{\rm had}^{(5)}(M_Z^2) \sim \int_{4\pi^2}^{\infty} ds \, \frac{R_{\rm had}(s)}{s(s - M_Z^2)}$$
3.1 GeV 2.0 GeV
$$\phi$$

$$\rho, \omega$$
13.GeV
$$0.0 \text{ GeV}, \infty$$
3.1 GeV
$$0.0 \text{ GeV}, \infty$$
3.1 GeV

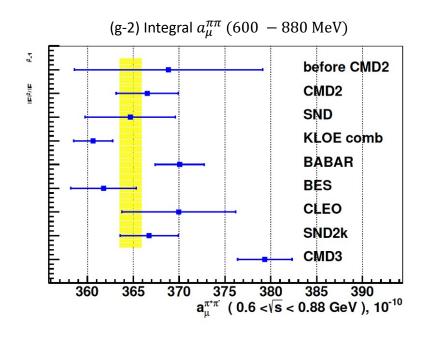
→ relevant mass range < 13 GeV

JG|U

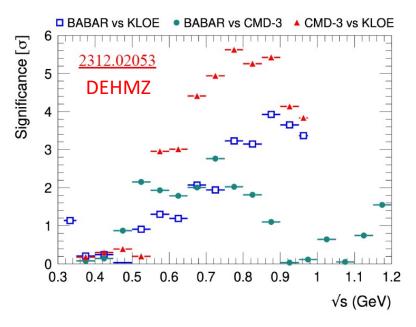

Whitepaper '25: Lattice QCD-based SM-Prediction for $(g-2)_{\mu}$



2023 Shock: CMD-3 @ Novosibirsk $e^+e^- \rightarrow \pi^+\pi^-$


Scrutiny of CMD-3 result within the Theory Initiative

- Very open replies by F. Ignatov → no major showstopper observed
- Very powerful analysis with many and impressive internal cross checks
- Monte-Carlo generator for energy scan cannot be independently varified



Deviation between data sets (in statistical significance)

→ Significant deviation from previous ISR <u>and</u> energy scan experiments (CMD-2)! Why?

CMD-3 Compatibility with other Experiments for HVP Integral

09/25: Genia Solodov @ Orsay Workshop Muon g-2
Theory Initiaitve

Insights into CMD2/CMD3 difference

- We don't have means to do a full scale CMD-2 analysis we can only get some hints about the potential sources of difference
- The radiative corrections are not the suspects.
- Suspect #1. Subtraction of cosmic background
 At CMD-3 we've developed better method to count cosmic background. Now we know that CMD-2 method had unaccounted systematic error (but we can't estimate it).
 The CMD-2 cosmic background was much larger:6% 15% compare to 0.12% for CMD-3
- Suspect #2. Event separation based on energy deposition CMD-3: LXe only (5X_o) and full calo (13X_o), observed very different behavior/systematics; might be able to take CsI only data CMD-2: CsI only (8X_o), systematics were estimated
- Suspect #3. Trigger. (correction was smal, but could be ...) Cmd2 had only one trigger with DC (4-6 superlayers), Z-chamber (2 layers) and Csl calorimeter with 40 MeV threshold in coincidence. Efficiency was studied assuming no correlations for π^+ and π^- . Correlated missing of both tracks could be we have it with CMD-3

All above was discussed at the previous presentations – we did not see large effects

E. Solodov(BINP)

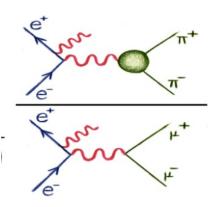
VIII Plenary Workshop of the Muon g-2 Theory Initiative. Update-News from CMD-3

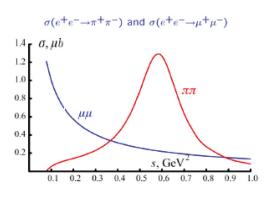
→ No explanation !?

Radiative Corrections and Initial State Radiation (ISR)

Measurements on R – Energy Scan vs. Initial State Radiation

Initial State Radiation - Normalization

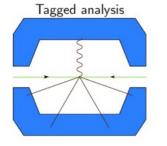

Two independent normalization methods:

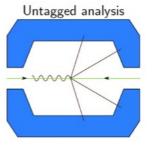

1) normalization to L_{int} (obtained from Bhabha events) and H_{rad} ; subtraction of background ($\mu+\mu-\gamma$, ...)

$$\sigma_{bare}(e^+e^- \to \pi^+\pi^-) = \underbrace{\frac{N_{\pi\pi\gamma}/\epsilon_{exp}}{L_{int} \cdot H_{rad}} \delta_{vac} \cdot (1 + \delta_{FSR})}$$

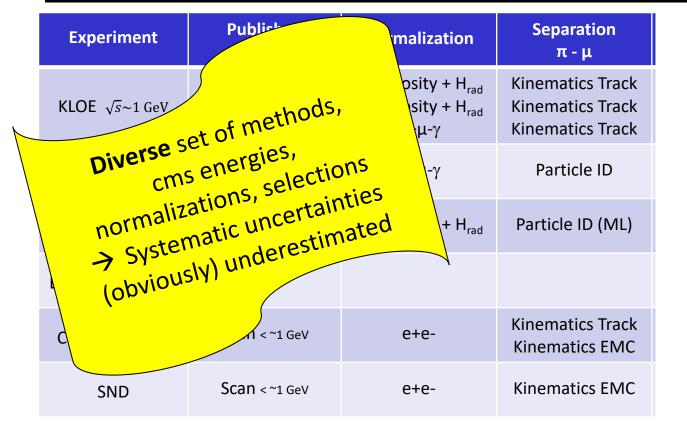
- 2) normalization to $\mu+\mu-\gamma$ events, i.e. R ratio $(\pi\pi\gamma/\mu\mu\gamma)$
 - \rightarrow L_{int}, H_{rad}, δ_{vac} cancel in ratio!
 - \rightarrow requires high statistics of $\mu+\mu-\gamma$

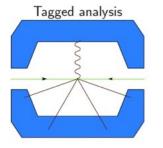
$$R = rac{ extstyle N_{\pi^+\pi^-}}{ extstyle N_{\mu^+\mu^-}} \cdot rac{arepsilon_{\mu^+\mu^-} \cdot \left(1 + \delta^{\mathsf{FSR}}_{\mu^+\mu^-}
ight)}{arepsilon_{\pi^+\pi^-} \cdot \left(1 + \delta^{\mathsf{FSR}}_{\pi^+\pi^-}
ight)} \quad \stackrel{ extstyle extstyle$$

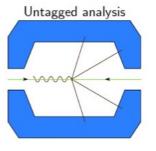



Overview Experiments

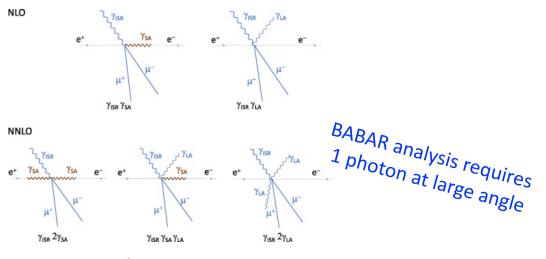
Experiment	Published Method	Normalization	Separation π - μ
KLOE √s~1 GeV	ISR untagged ISR tagged ISR untagged	Luminosity + H_{rad} Luminosity + H_{rad} μ + μ - γ	Kinematics Track Kinematics Track Kinematics Track
BABAR √s~10 GeV	ISR tagged	μ+μ-γ	Particle ID
BESIII √s~4 GeV	ISR tagged	Luminosity + H _{rad}	Particle ID (ML)
BELLE-II √s~10 GeV			
CMD-2/CMD-3	Scan < ~1 GeV	e+e-	Kinematics Track Kinematics EMC
SND	Scan < ~1 GeV	e+e-	Kinematics EMC

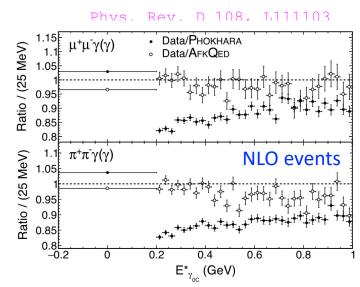

With (large Θ) and without (small Θ) ISR photon detection




JG

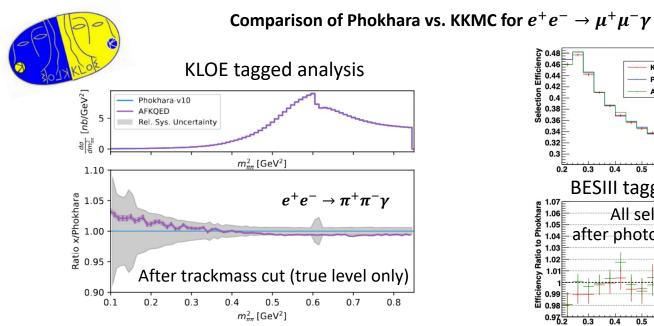
Overview Experiments

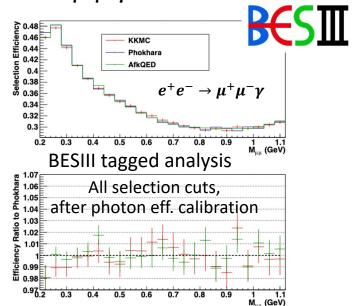

With (large Θ) and without (small Θ) ISR photon detection


JG|U

BABAR Radiative Correction Studies (2023)

Detailed study of NLO and NNLO radiative corrections


- Kinematic fits for $\pi^+\pi^- \gamma_{ISR,LA} \gamma (\gamma)$, $\mu^+\mu^- \gamma_{ISR,LA} \gamma (\gamma)$
- Comparison with PHOKHARA (NLO full correction) and AfkQED (collinear approximation beyond LO) generators
- → NNLO radiation observed at 3.5% level (missing in PHOKHARA)
- → Phokhara prediction for small angle ISR photons at NLO too high by ~25% (AfkQED fits better to data)



JG U

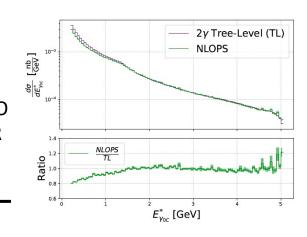
KLOE / BESIII Response to PHOKHARA Shortcomings

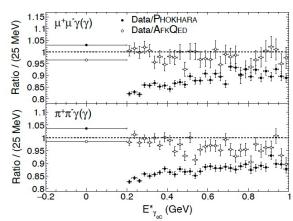
Investigation of kinematic cuts, which are sensitive to NLO corrections: Trackmass (KLOE), χ^2 (BESIII)

Whitepaper muon g-2 2025

→ No indication of large systematic effects (beyond uncertainties) due to Phokhara limitations!

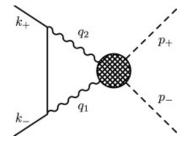
The need for improved radiative corrections


<u>ISR</u>: for hadronic channels (especially two-pion channel) no independent cross check to Phokhara! <u>Energy scan</u>: no independent cross check to MCGPJ generator!


- \rightarrow Development of new MC generators of utmost importance for the field PHOKHARA@NNLO, McMule, Sherpa, BABAYAGA@NLO (including $\pi^+\pi^-\gamma$)
- → Controlled treatment of Final State Radiation effects
- → Efforts coordinated within the RadioMontecarlow initiative
- → Strong interplay between Theory and Experiment

Fulvio Piccini @ Orsay

First results from new BABAYAGA@NLO
 → seems to confirm findings of BABAR regarding PHOKHARA limitations



Final State Radiation

JG U

As a by-product of the CMD-3 analysis, the importance of an accurate treatment of FSR was studied

Effects beyond scalar QED (sQED) of utmost importance, especially in box diagrams

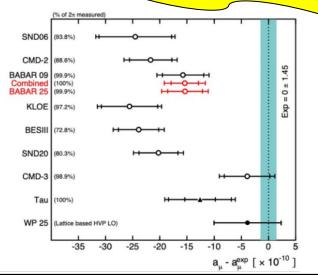
- → excellent agreement btw. GVMD calculation and dispersive treatment as well as CMD-3 data
- → implementation in ISR generators most important!

PLB833 (2022) 137283

Forward-backward asymmmetry is a most sensitive parameter:

$$A = \frac{N_{\theta < \pi/2} - N_{\theta > \pi/2}}{N_{\theta < \pi/2} + N_{\theta > \pi/2}}$$

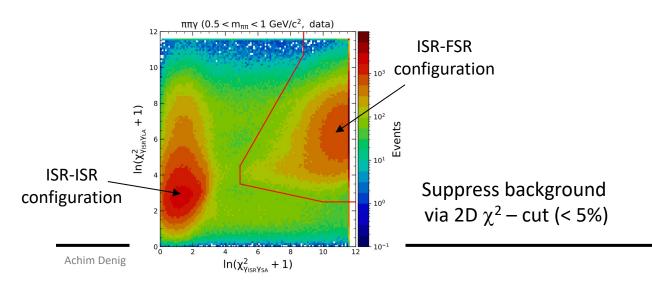
Breaking News from 2025 Orsay Workshop and Outlook

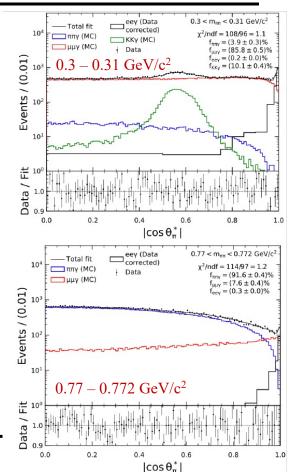

18

New BABAR ISR Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

Andreas Pinto @ Orsay

- New **blind BaBar analysis** (460 fb⁻¹) confirms the $\pi^+\pi^-$ contribution to a_{μ} .
- Independent method (angular fits, no PID) removes dominant 2009 systematic.
- Unblinded $\mu\mu\gamma$ spectrum agrees with QED, validating the approach.
- $\pi\pi$ cross section consistent with 2009, with reduced systematics in 0.5–1.4 GeV.
- · Results:
 - Below 0.5 GeV: $a_{\mu}^{\pi\pi} = (58.0 \pm 5.5 \text{ (stat.)} \pm 1.7 \text{ (syst.)}) \times 10^{-10}$
 - 0.5–1.4 GeV: $a_{\mu}^{\pi\pi} = (456.2 \pm 2.2 \text{ (stat.)} \pm 1.7 \text{ (syst.)}) \times 10^{-10}$
- Robustness shown by excellent agreement with 2009.
- Central region: systematic error 0.37%, statistical error (from fit) similar to 2009 analysis
- Statistical error dominates in threshold region


New Large-Angle BABAR analysis: $Factor\ x2\ more\ statistics$ $Independent\ \pi\ -\mu\ separation$

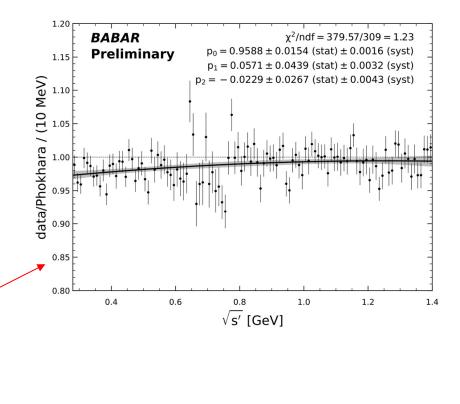


New BABAR ISR Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

- Innovative new approach: Separation of $e^+e^- \rightarrow e^+e^-/\mu^+\mu^-/\pi^+\pi^-\gamma$ via template fits to polar angle distributions
- NLO fits for 2 high-energetic photons: $1 \gamma_{ISR-LA} + 1 \gamma_{ISR-SA}$ versus $1 \gamma_{ISR-LA} + 1 \gamma_{ISR-LA}$

20

New BABAR ISR Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

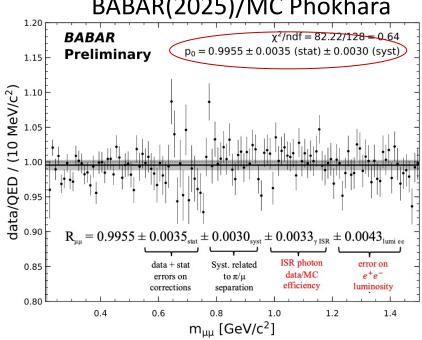

Normalization to μμγ channel

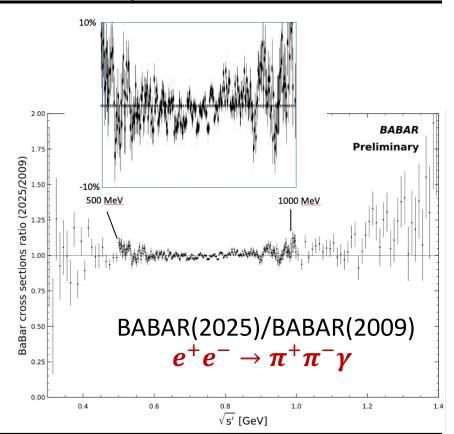
 \rightarrow introduce ISR Luminosity $L_{ISR} = L_{inv}x H_{rad}$

$$\frac{dL_{\rm ISR}^{\rm eff}}{d\sqrt{s'}} = \frac{dN_{\mu\mu}^{\rm ISR}/d\sqrt{s'}}{\epsilon_{\mu\mu}(\sqrt{s'})~\sigma_{\mu\mu}^0(\sqrt{s'})} \\ {}_{\rm Acceptance} {}_{\rm Born~cross~section}$$

ISR $\mu\mu\gamma$ spectrum not taken from data, but from Phokhara Monte-Carlo !!!

$$\frac{dN_{\mu\mu}^{\rm ISR}/d\sqrt{s'}}{\epsilon_{\mu\mu}(\sqrt{s'})} = \underbrace{\frac{dN_{\mu\mu}^{\rm MC~gen}}{d\sqrt{s'}}}_{\substack{\rm Phokhara\\ \rm spectrum~at\\ \rm generation\\ \rm level}} \times \underbrace{(1-f_{\rm LO~FSR})}_{\substack{\rm removes~the\\ \rm LO~FSR\\ \rm contribution}} \times \underbrace{f_{\mu\mu}(\sqrt{s'})}_{\substack{\rm 2nd~order\\ \rm polynomial~fit\\ \rm to~data/MC}}$$

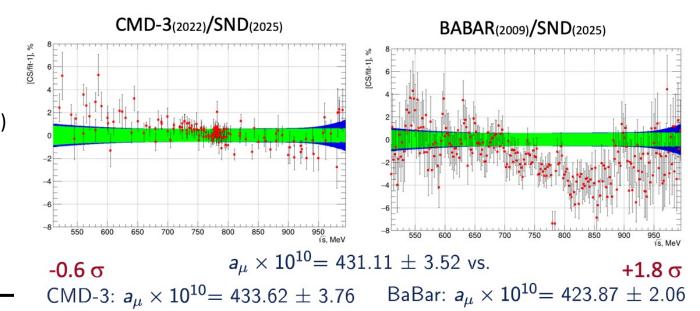




New BABAR ISR Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

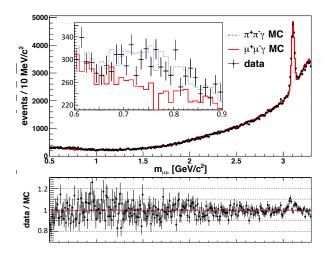
21

Andreas Pinto @ Orsay $e^+e^- \rightarrow \mu^+\mu^-\gamma$ BABAR(2025)/MC Phokhara

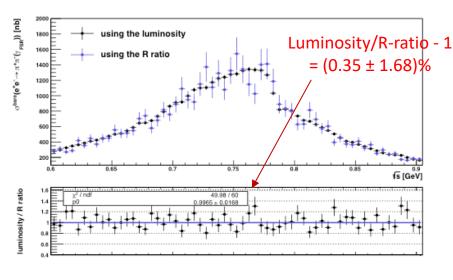


New SND Measurement of $e^+e^- \rightarrow \pi^+\pi^-$ (energy scan)

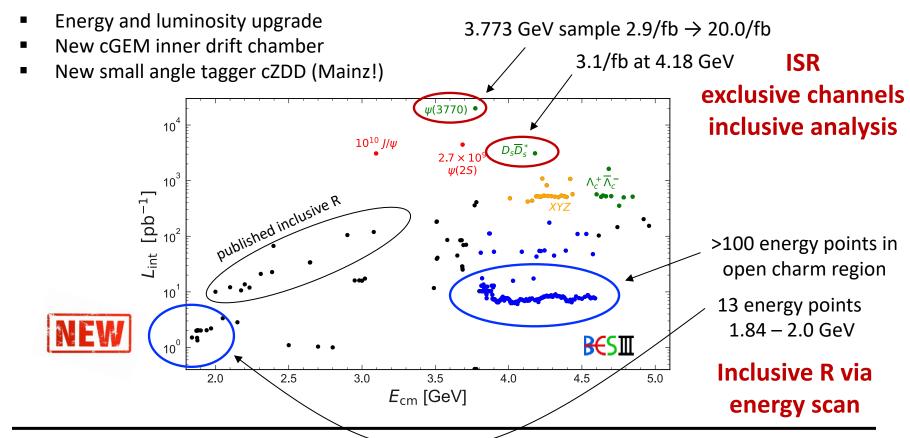
- New SND analysis based on 90/pb of data collected in 2018 (factor x20 compared to SND20)
- New selection algorithm, systematic uncertainty of 0.7%
 - → higher cross section compared to previous analysis (SND20)
 - → " application of the current analysis techniques to (previous) data results in better agreement"
- Cross check on 2% level with 2019 data
- In dispersion integral
 -0.6σ wrt. CMD-3
 +1.8σ wrt. BABAR(09)



New BESIII Analysis of 2π Channel


Published BESIII Analysis

- PLB753 (2016) 629 PLB812 (2021) 135983
- Tagged analysis based on 2.9/fb sample taken at cms. energy of 3.773 GeV
- 4C kinematic fit (tagged ISR photon used in fit)
- π/μ separation based on neural network (ANN)


- Selecting muons using ANN
- Perfect agreement with QED prediction

- Normalization to Luminosity / radiator function
- Normalization to μμγ limited by muon statistics

Status BESIII Experiment

Achim Denig

Status of R measurements

Upcoming new ISR BESIII Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

0.1

0.2

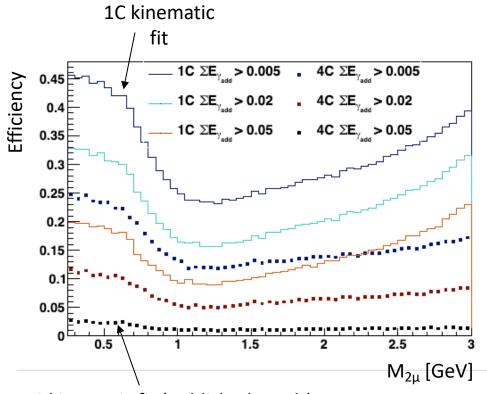
Existing BESIII tagged ISR result based on 2.9/fb of data at \sqrt{s} =3.77 GeV - 4C kinematic fit 0.9% systematic uncertainty

First half next year: expect new result! adding 3.1/fb of data at \sqrt{s} =4.18 GeV; 1C kinematic fit \rightarrow much less sensitive towards MC limitations of rad. corrections, some minor additional improvements (0.7%); keep ML-based PID (π - μ sepratation)

Next step: final result based on existing data set of 20/fb of data at \sqrt{s} =3.77 GeV; 1C kinematic fit and normal. to $\mu\mu\gamma$ (<0.5%)

sources	Uncertainty (%)
Photon efficiency	$0.2 \rightarrow 0.0$
Tracking efficiency	$0.3 \rightarrow 0.2$
Pion ANN efficiency	0.2
Pion e-PID efficiency	$0.2 \rightarrow 0.0$
Angular acceptance	0.1

Background subtraction


Unfolding

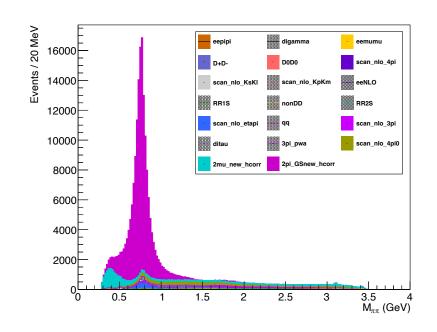
Sum

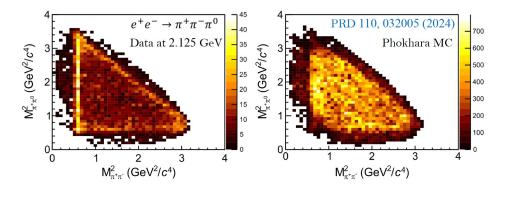
 $\begin{array}{ccc} \text{FSR correction } \delta_{\text{FSR}} & 0.2 \\ \text{Vacuum polarization correction } \delta_{\text{vac}} & 0.2 \\ \text{Radiator function} & 0.5 \\ \text{Luminosity } \mathcal{L}_{\text{int}} & 0.5 \rightarrow 0.3 \end{array}$

JG|U

Upcoming new ISR BESIII Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

1C kinematic fit with much (x4) improved efficiency for NLO ISR photons


→ more inclusive for (N)NLO photons


4C kinematic fit (published result)

Price to pay in case of 1C kinematic fit (rather than 4C)

ightarrow significantly larger background contribution, especially non-radiative $e^+e^ightarrow\pi^+\pi^-\pi^0$

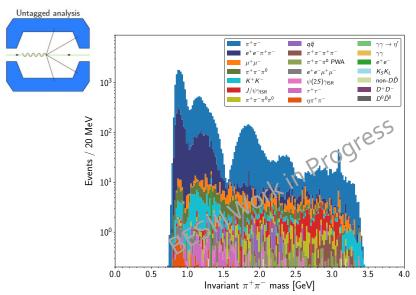
Insufficient description of internal dynamics observed in Phokhara event generator for high cms energies:

- Already observed at lower energies in scan data
- Dedicated PWA analysis within bachelor project

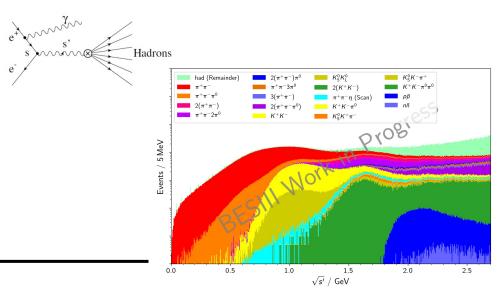
Status of new BESIII Analysis

- Blinding and unblinding strategy defined and implemented
- Event selection criteria are defined and frozen
- Various data-MC corrections being finalized
- Deadtime corrections for Bhabha channel (luminosity) being investigated
- Preparing documentation for internal review

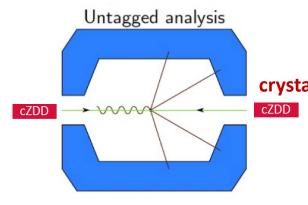
Philosophy of upcoming new BESIII analysis → Implement as many cross checks as possible:


- 1C kinematic fit vs. 4C with entirely different background conditions
- cms energy of 3.77 GeV (2.9/fb) vs. 4.18 GeV (3.1/fb)
- Three normalization methods
 - Luminosity and radiator function (standard method)
 - ππγ / μμγ
 - Template fits to polar angle distributions

Other highly-relevant BESIII Analysis

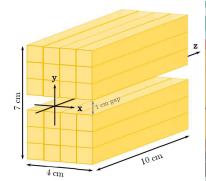

Untagged analysis (mass range > 1 GeV)

- Improvement in statistics wrt. BABAR
- Severe background conditions
- PhD project of Yasemin Scheelhaas in final stage

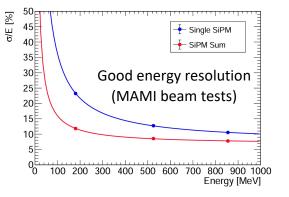


Inclusive R measurement via ISR (mass range <2 GeV)

- First-time measurement (after BABAR attempts)
- Currently based on 1-track selection
- Reduced dependence on Inclusive MC (> 97% efficiency)
- Few-percent precision achieved after unfolding
- PhD project of Thomas Lenz in final stage



Installation of a Tagging Detector at BESIII: cZDD

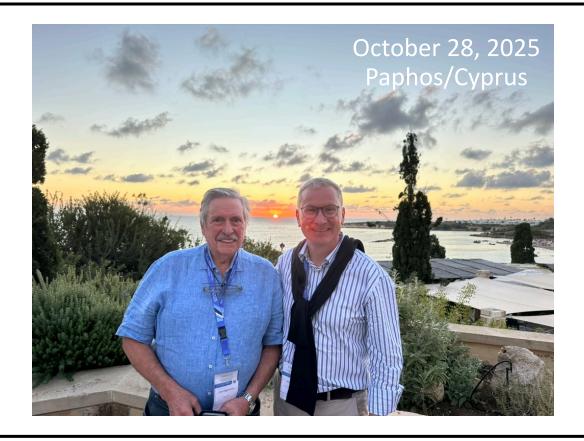

crystal Zero Degree Detector

2 half detectors with 12 LYSO crystals each (SiPM) (on both sides), retractable

- → PANDA sampling ADC for SiPM readout
- → can also be used as luminosity detector

Installed in BESIII on Sept. 10th

→ cZDD detector will improve our capabilities for ISR physics (tagging of ISR photon, background subtraction, ...)


Conclusions

- New Lattice as well as CMD-3 results challenging previous e^+e^- data
 - difference in $\pi^+\pi^-$ between CMD-3 and other expts. to be understood
 - new BABAR data confirms previous BABAR result (in conflict with FNAL g-2)
 - will be exciting to see next upcoming new results (BESIII, expected 2026)
- Radiative corrections are a key issue → RadioMonteCarlow initiative!
 Comparison of existing MC codes should be possible very soon (finally!)
 New analysis algorithms designed to be resilient against MC limitations
- Experiments (BABAR, BELLE-II, BESIII, CMD-3, KLOE, SND) targeting ~0.5% precision

A lot of effort needed to bring data-driven HVP determination back to business, but given the efforts on theory side and exchange among/with experimentalists (e.g. this meeting), we can be optimistic!

Overview Experiments – Past and Future

Experiment	Published Method	Normalization	Separation π - μ - e	Future
KLOE	ISR untagged ISR tagged ISR untagged	Luminosity Luminosity μ+μ-γ	Kinematics Track Kinematics Track Kinematics Track	ISR untagged μ+μ-γ statistics x 7
BABAR	ISR tagged	μ+μ-γ	Particle ID	ISR tagged, separation by polar angle, statistics x 2
BESIII	ISR tagged	Luminosity	Particle ID (ML)	ISR tagged, μ+μ-γ, statistics x 7, 1C kin. fit
BELLE-II				ISR tagged, μ+μ-γ, Particle ID
CMD-3	Energy scan	e+e-	Kinematics Track Kinematics EMC	overall improvements
SND	Energy scan	e+e-	Kinematics EMC	overall improvements ML for π – e separation

Overview Experiments – Past and Future

Experiment	Published Method	Normalization	Separation π - μ - e	Future	
KLOE	ISR untagged ISR tagged ISR untagged	Luminosity Luminosity μ+μ-γ	Kinematics Track Kinematics Track Kinematics Track	ISR untagged μ+μ-γ statistics x 7	0.4%
BABAR	ISR tagged	μ+μ-γ	Particle ID	ISR tagged, separation by polar angle, statistics x 2	0.5%
BESIII	ISR tagged	Luminosity	Particle ID (ML)	ISR tagged, μ+μ-γ, statistics x 7, 1C kin. fit	0.5%
BELLE-II			aration:	ISR tagged, μ+μ-γ, Particle ID	0.5%
CMD-3	Energy scan	lalyses in prep	techniques	overall improvements	0.3%
SND	New MC go	enerators, new ness to (N)NLO	Kinematics EMC	overall improvements ML for π – e separation	0.7%

Achim Denig