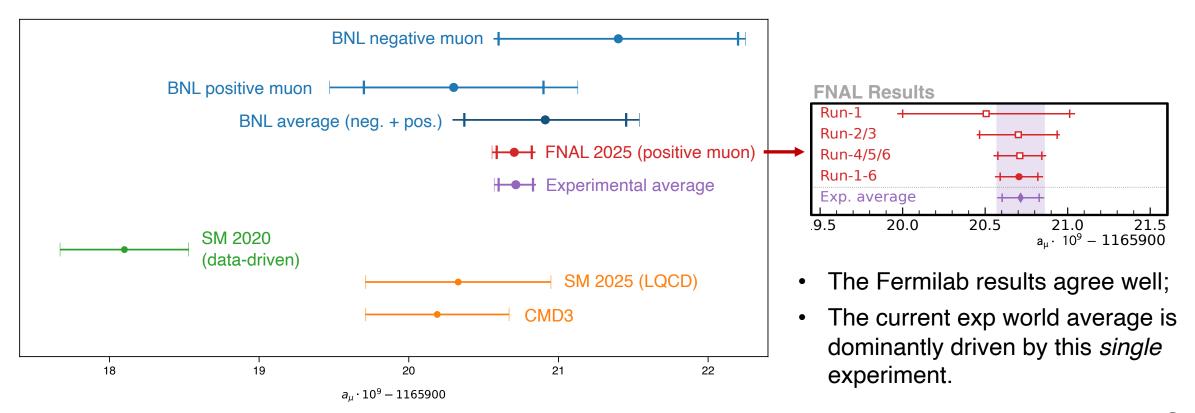
CANTON- μ Proposal:

A Next-Generation Muon g-2 Experiment at Sub-0.1 ppm Precision

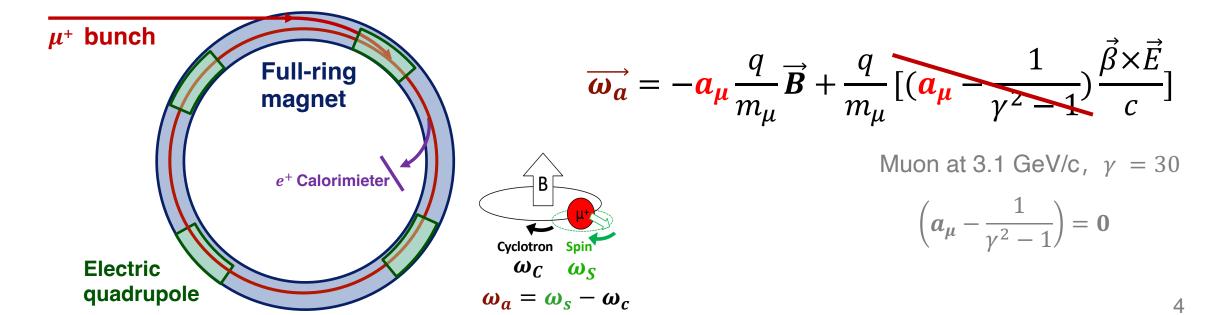
Ce Zhang

The 4th Liverpool Workshop on Muon Precision Physics (MPP 2025)


CANTON- μ Proposal:

A Next-Generation Muon g-2 Experiment at Sub-0.1 ppm Precision

- Muon g-2: status and limitations
- HIAF, and other emerging muon sources in China
- Experimental concepts towards sub-0.1-ppm precision
- Outlook and summary


Muon g-2: status and limitations

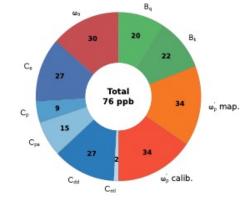
 The theory remains unsettled — different approaches give inconsistent results that still need to be understood.

1) Single experimental method

- The method has remained unchanged since CERN-III (1979).
- Muons at *magic momentum* (3.1 GeV/c) are injected into a uniform B-field, with (a) calorimeters detecting positrons and (b) NMR probes calibrating the field.

1) Single experimental method

- The method has remained unchanged since CERN-III (1979).
- Muons at *magic momentum* (3.1 GeV/c) are injected into a uniform B-field, with (a) calorimeters detecting positrons and (b) NMR probes calibrating the field.

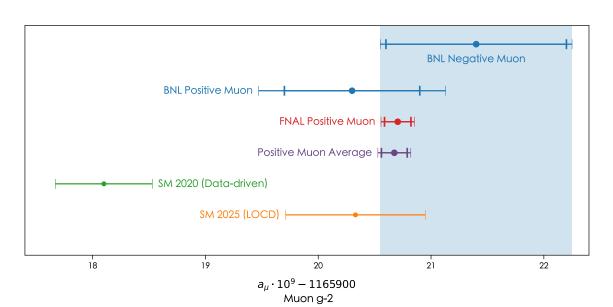

- Could the Fermilab results be affected by any intrinsic, yet insufficiently considered limitations, potentially introducing systematical bias?
- Another high-precision measurement using a new approach would be critical to double-check the BNL-FNAL results, similar to practices at the LHC.

1) Single experimental method

 Also, this approach had essentially hit the limit — the systematic and statistical uncertainties are roughly comparable. The systematics errors are distributed almost uniformly.

R	ur	1-4	/5/	6

Owentite	Correction	Uncertainty
Quantity	(ppb)	(ppb)
ω_a^m (statistical)		114
ω_a^m (systematic)	•••	30
C _e Electric Field	347	27
C_p Pitch	175	9
C_{pa} Phase Acceptance	-33	15
C _{dd} Differential Decay	26	27
C_{ml} Muon Loss	0	2
$\langle \omega_p' \times M \rangle$ (mapping, tracking)		34
$\langle \omega_p' \times M \rangle$ (calibration)		34
B _k Transient Kicker	-37	22
B_q Transient ESQ	-21	20
μ_p'/μ_B		4
m_{μ}/m_e		22
Total systematic for \mathcal{R}'_{μ}		76
Total for a_{μ}	572	139



- Systematics are "evenly" distributed:
 - No dominant source
 - Further improving would require to reduce in many categories

$rac{oldsymbol{\omega_a}}{\widetilde{oldsymbol{\omega}_p'}}$	Stat.	Syst.	Total
	Uncertainty	Uncertainty	Uncertainty
	(ppb)	(ppb)	(ppb)
Run-1-6	98	78	127
	TDR goal	TDR goal:	TDR goal:
	100 ppb √	100 ppb √	140 ppb √

2) No precise result for negative muons

- The Fermilab experiment measured the *positive* muon (μ ⁺) with a precision of **0.14 ppm** (2025);
- The most recent measurement of the *negative* muon (μ ⁻) still dates back to the BNL result (2004), with a precision of **0.7 ppm** about five times worse.

- Notably, theoretical differences are being investigated and potentially converging. Theory is expected to reach a higher precision in the next few years
- $\mu^- g 2$ will be the least precise and most outdated results by then.

New Physics with $(g-2)_{\mu}$

1) CPT and Lorentz-violation test

- In the Standard Model, μ^+ and μ^- g–2 should be the same. A difference would be direct evidence of CPT violation.
- A precise μ^- g–2 alongside μ^+ would greatly improves sensitivity to new physics and tightens constraints on many models.

PRL 100, 091602 (2008) PHYSICAL REVIEW LETTERS

week ending 7 MARCH 2008

Search for Lorentz and CPT Violation Effects in Muon Spin Precession

G. W. Bennett,² B. Bousquet,¹⁰ H. N. Brown,² G. Bunce,² R. M. Carey,¹ P. Cushman,¹⁰ G. T. Danby,² P. T. Debevec,⁸ M. Deile, ¹³ H. Deng,¹³ W. Deninger,⁸ S. K. Dhawan,¹³ V. P. Druzhinin,³ L. Duong,¹⁰ E. Efstathiadis,¹ F. J. M. Farley,¹³ G. V. Fedotovich,³ S. Giron,¹⁰ F. E. Gray,⁸ D. Grigoriev,³ M. Grosse-Perdekamp,¹³ A. Grossmann,⁷ M. F. Hare,¹ D. W. Hertzog,⁸ X. Huang,¹ V. W. Hughes,^{13,*} M. Iwasaki,¹² K. Jungmann,^{6,7} D. Kawall,¹³ M. Kawamura,¹² B. I. Khazin,³ J. Kindem,¹⁰ F. Krienen,¹ I. Kronkvist,¹⁰ A. Lam,¹ R. Larsen,² Y. Y. Lee,² I. Logashenko,^{1,3} R. McNabb,^{8,10} W. Meng,² J. Mi,² J. P. Miller,¹ Y. Mizumachi,^{9,11} W. M. Morse,² D. Nikas,² C. J. G. Onderwater,^{6,8} Y. Orlov,⁴ C. S. Özben,^{2,8} J. M. Paley,¹ Q. Peng,¹ C. C. Polly,⁸ J. Pretz,¹³ R. Prigl,² G. zu Putlitz,⁷ T. Qian,¹⁰ S. I. Redin,^{3,13} O. Rind,¹ B. L. Roberts,¹ N. Ryskulov,³ S. Sedykh,⁸ Y. K. Semertzidis,² P. Shagin,¹⁰ Yu. M. Shatunov,³ E. P. Sichtermann,¹³ E. Solodov,³ M. Sossong,⁸ A. Steinmetz,¹³ L. R. Sulak,¹ C. Timmermans,¹⁰ A. Trofimov,¹ D. Urner,⁸ P. von Walter,⁷ D. Warburton,² D. Winn,⁵ A. Yamamoto,⁹ and D. Zimmerman¹⁰

(Muon g-2 Collaboration)

In 2008, BNL set stringent limits on the parameters of CPT-violating Standard-Model Extension (SME):

$$\Delta\omega_a \equiv \langle \omega_a^{\mu^+} \rangle - \langle \omega_a^{\mu^-} \rangle = \frac{4b_Z}{\gamma} \cos \chi$$
$$b_Z = -(1.0 \pm 1.1) \times 10^{-23} \text{ GeV}$$

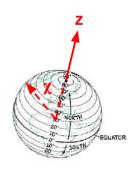
bz is a parameter characterizing the potential for CPT-odd (CPT-violating) effects.

New Physics with $(g-2)_{\mu^-}$

1) CPT and Lorentz-violation test

- In the Standard Model, μ^+ and μ^- g–2 should be the same. A difference would be direct evidence of CPT violation.
- A precise μ^- g–2 alongside μ^+ would greatly improves sensitivity to new physics and tightens constraints on many models.

SME Lagrangian:


$$\mathcal{L}' = -a_{\kappa} \bar{\psi} \gamma^{\kappa} \psi - \underbrace{b_{\kappa}}_{\stackrel{}{}} \bar{\psi} \gamma_{5} \gamma^{\kappa} \psi - \frac{1}{2} H_{\kappa \lambda} \bar{\psi} \sigma^{\kappa \lambda} \psi + \frac{1}{2} i c_{\kappa \lambda} \bar{\psi} \gamma^{\kappa} \stackrel{}{D}^{\lambda} \psi + \frac{1}{2} i d_{\kappa \lambda} \bar{\psi} \gamma_{5} \gamma^{\kappa} \stackrel{}{D}^{\lambda} \psi$$

- All terms violate Lorentz invariance
- $-a_{\nu}$, b_{ν} are CPT-odd; others are CPT-even

CPT- and Lorentz-Violation Tests with Muon g-2

B. Quinn

Department of Physics and Astronomy, University of Mississippi, University, MS 38677, USA

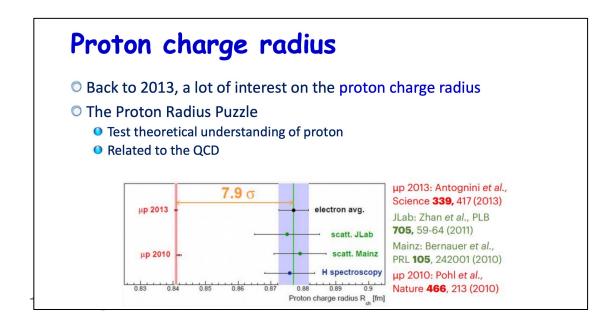
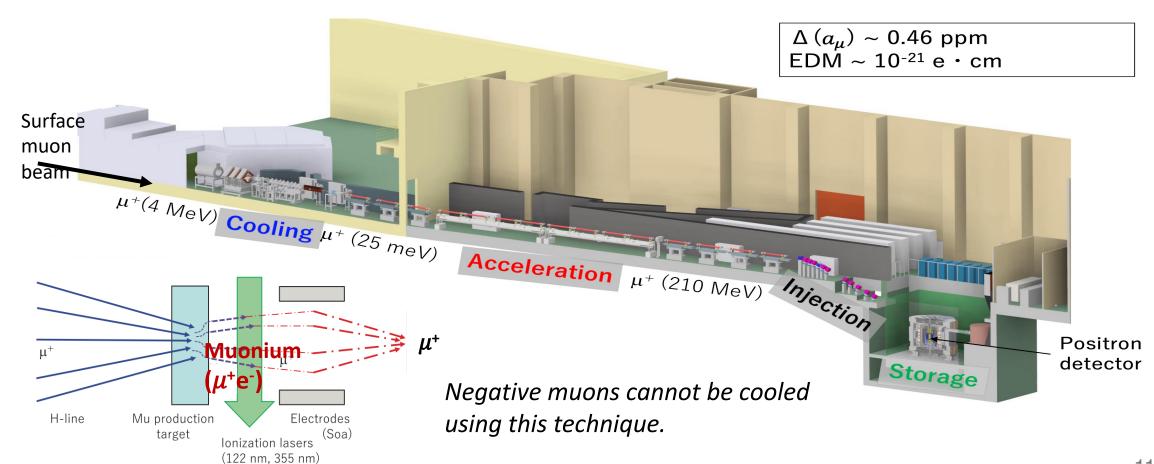


Table D21. Muon sector, $d=3$						
Combination	Result	System	Ref.			
$\begin{array}{l} \operatorname{Re} H_{011}^{\operatorname{NR}(0B)} , \ \operatorname{Im} H_{011}^{\operatorname{NR}(0B)} , \ \operatorname{Re} g_{011}^{\operatorname{NR}(0B)} , \ \operatorname{Im} g_{011}^{\operatorname{NR}(0B)} \\ \operatorname{Re} H_{011}^{\operatorname{NR}(1B)} , \ \operatorname{Im} H_{011}^{\operatorname{NR}(1B)} , \ \operatorname{Re} g_{011}^{\operatorname{NR}(1B)} , \ \operatorname{Im} g_{011}^{\operatorname{NR}(1B)} \end{array}$	$(2 \times 10^{-22} \text{ GeV})$ $(2 \times 10^{-22} \text{ GeV})$ $(3 \times 10^{-23} \text{ GeV})$	Muonium spectroscopy	[20]* [20]*			
b^T/m_μ	$(7.3 \pm 5.0) \times 10^{-7}$	Muon decay	[184]*			
b_Z	$-(1.0 \pm 1.1) \times 10^{-23} \text{ GeV}$	BNL $g_{\mu} - 2$	[185]			
$\sqrt{(\check{b}_{X}^{\mu^{+}})^{2}+(\check{b}_{Y}^{\mu^{+}})^{2}}$	$<1.4\times10^{-24}~{\rm GeV}$	77	[185]			
$\sqrt{(\check{b}_X^{\mu^-})^2+(\check{b}_Y^{\mu^-})^2}$	$<2.6\times10^{-24}~{\rm GeV}$	22	[185]			
$\sqrt{(\tilde{b}_X)^2 + (\tilde{b}_Y)^2}$	$<2\times 10^{-23}~{\rm GeV}$	Muonium spectroscopy	[186]			
$b_Z - 1.19 (m_\mu d_{Z0} + H_{XY})$	$(-1.4 \pm 1.0) \times 10^{-22} \text{ GeV}$	BNL, CERN $g_{\mu}-2$ data	[187]			
b_Z	$(-2.3 \pm 1.4) \times 10^{-22} \text{ GeV}$	CERN $g_{\mu} - 2$ data	[187], [188]*			
$ \operatorname{Re} H_{011}^{(3)(0B)} , \operatorname{Im} H_{011}^{(3)(0B)} $	$< 5 \times 10^{-23}~{ m GeV}$	77	[20]*			
$\check{H}_{ata}^{(3)}$	$(-1.6 \pm 1.7) \times 10^{-22} \text{ GeV}$	BNL, CERN $g_{\nu} - 2$ data	[20]*			
$ \operatorname{Re} \widecheck{H}_{011}^{(3)} , \ \operatorname{Im} \widecheck{H}_{011}^{(3)} $	$<2.0\times10^{-24}~{\rm GeV}$	BNL $g_{\mu}-2$	[20]*			
$m_{\mu}d_{Z0} + H_{XY}$	$(1.8 \pm 6.0) \times 10^{-23} \text{ GeV}$	n	[185]			

New Physics with $(g-2)_{\mu}$

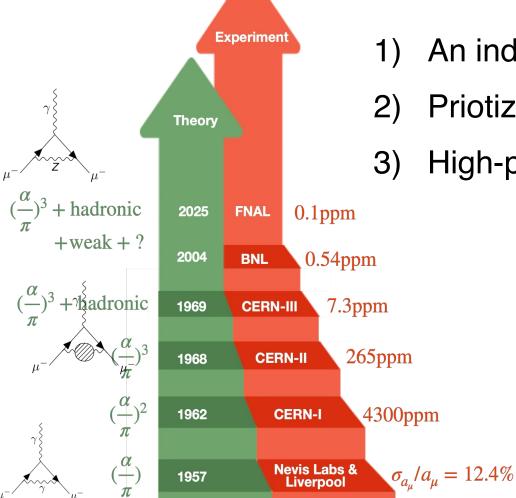
2) Connection to atomic physics

- Negative muons can form muonic atoms (e.g., muonic hydrogen & helium).
- The negative muon g-2 can be connected with muon spectroscopy exps, providing insights into higher-order QED and nuclear structure effects.


TABLE I. Contributions to the muonic hydrogen Lamb shift. The proton radius is taken from [20]. The various contributions are discussed in the text.				
Contribution	Value (meV)	Uncertainty (meV)		
Uehling	205.0282			
Källen-Sabry	1.5081			
Wichmann-Kroll	-0.00103			
Virt. Delbrueck	0.00135	0.00015		
Mixed mu-e VP	0.00007			
Hadronic VP	0.011	0.002		
0: 4 1 [00]	0.00761			

Phys. Rev. A **71**, 032508:

HVP could be updated with negative muon g-2


The g-2 experiment at J-PARC

Featuring positive muon cooling

Other possibilities

for Next-Generation Muon g–2 measurements

- 1) An independent new method;
- 2) Priotizing g-2 of negative μ , if feasible;
- 3) High-precision, matching or surpassing FNAL (0.1 ppm).
 - → Prerequisite: a high-intensity muon source

A glimpse of muon sources in China

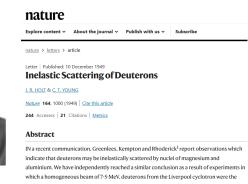
Check out my backup slides for source ① and ②

3 HIAF and CiADS

Two neibourhood facilities managed by Institute of Modern Physics (IMP)
of the Chinese Academy of Sciences

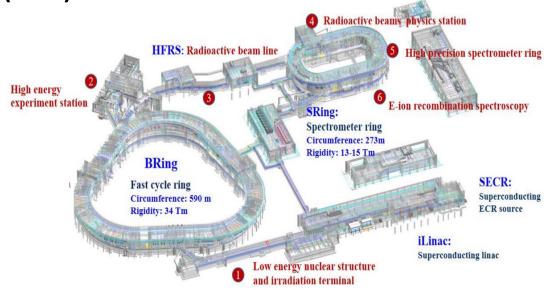
- Mainly focused on heavy-ion science and technology, based on the Heavy Ion Research Facility in Lanzhou (HIRFL);
- Also covers nuclear physics, atomic and molecular physics, material radiation effects, radiation biology, particle accelerator technology...

3 HIAF and CiADS

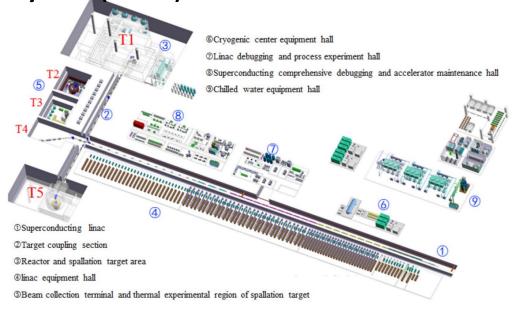

Two neibourhood facilities managed by Institute of Modern Physics (IMP)
of the Chinese Academy of Sciences

 The institute was founded by a physicist Young, Chen-Tsoong who carried out PhD research in Liverpool (1947-49) in the George Holt Physics Laboratories and worked with J. Chadwick, J. Rotblat and J. R. Holt.

1912.4 – 1987.12



3 HIAF and CiADS


Two neibourhood facilities managed by Institute of Modern Physics (IMP)

High-Intensity heavy-ion Accelerator Facility (HIAF)

https://english.imp.cas.cn/research/facilities/HIAF/

China-initiative Accelerator-Driven Subcritical system (CiADS)

https://english.imp.cas.cn/research/facilities/CIADS/

3 HIAF and CiADS

Two neibourhood facilities managed by Institute of Modern Physics (IMP)

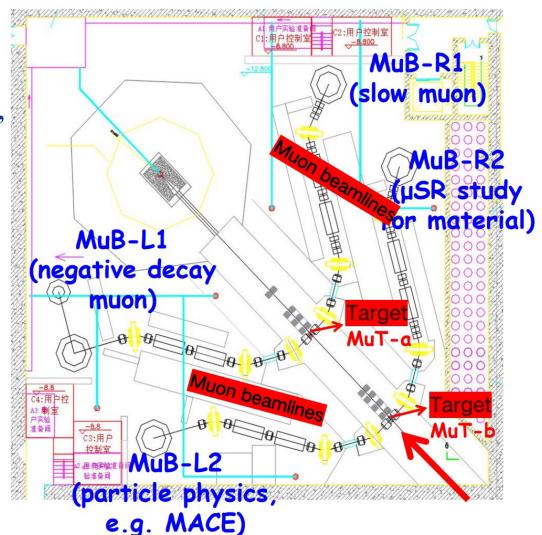
High-Intensity heavy-ion Accelerator Facility (HIAF)

- Heavy-ion acceleration and nuclear physics: nuclear structure, nuclear astrophysics, and high-energy-density matter;
- High-current ion sources, superconducting linacs, and large storage rings;
- Comparable to GSI/FAIR in capability;
- Planning a high-energy muon (1-20 GeV).

China-initiative Accelerator-Driven Subcritical system (CiADS)

- Nuclear energy and waste transmutation;
- To demonstrate the Accelerator-Driven
 System (ADS) concept for sustainable nuclear energy and minimal radioactive waste;
- High-power proton linear accelerator coupled to a subcritical lead-bismuth reactor;
- Planning a **low-energy muon** (e.g. surface muon beam).

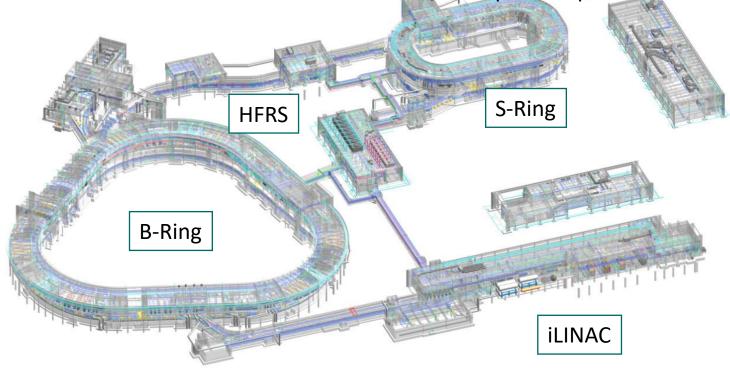
3 HIAF and CiADS


The plan of CiADS muon source (MuST)

- ☐ Muon terminal area: ~800 m²
- **□** Construction plan of 2 phases
 - ➤ Phase I (2025–2028): one target station (0.5 mA, 600 MeV, CW wave & time-structed beam), two muon beamlines
 - ➤ Phase II (2029–2032): Add one additional target station and two beamlines, power upgradable to 3 MW

□ Current design parameters

Beam power	Target	Focusing method	Muon intensity (μ+/s)
1st phase	Graphite	Solenoid + quadrupole	> 5E7
300 kW	rotating target	Full solenoid	> 5E8
2 nd phase Liquid lithium		Solenoid + quadrupole	> 1E9
3 MW	target	Full solenoid	> 1E10

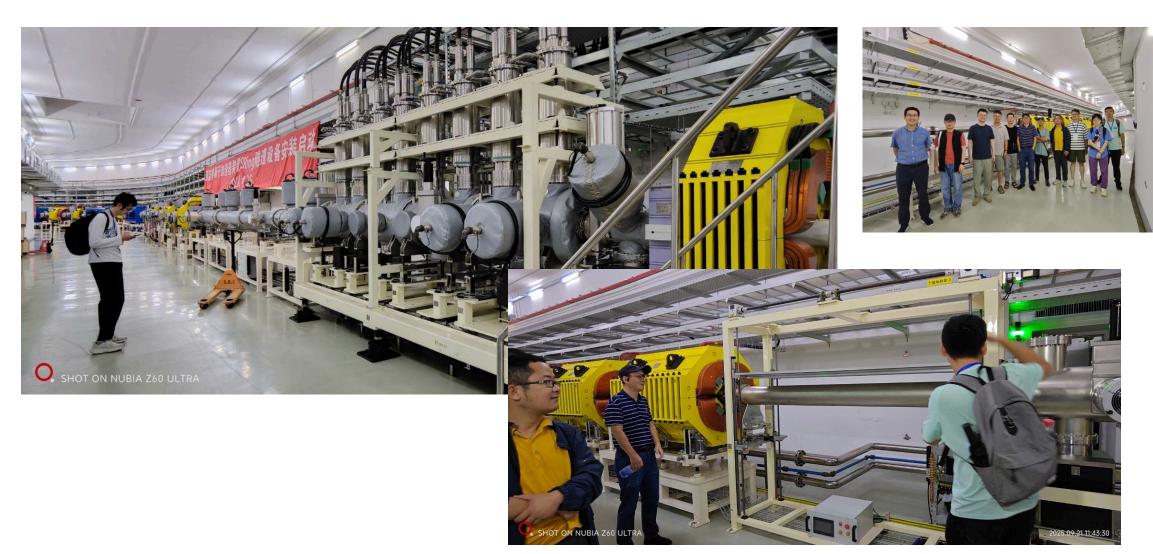


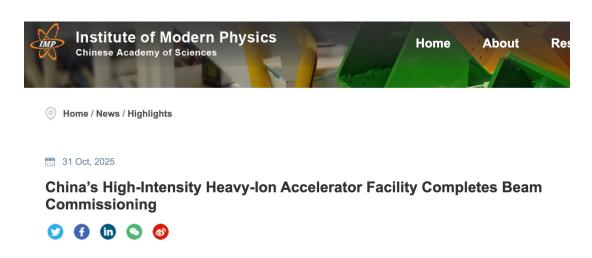
High Intensity heavy-ion Accelerator Facility

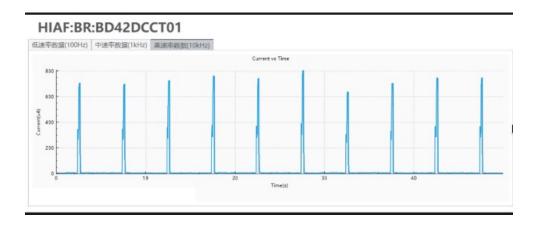
Two modes:

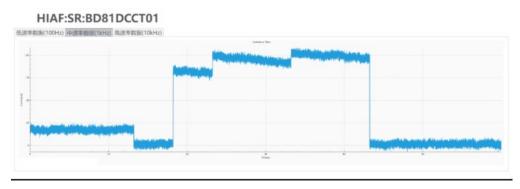
Fast operation: 400 ns bunch length with a repetition rate of 3 Hz

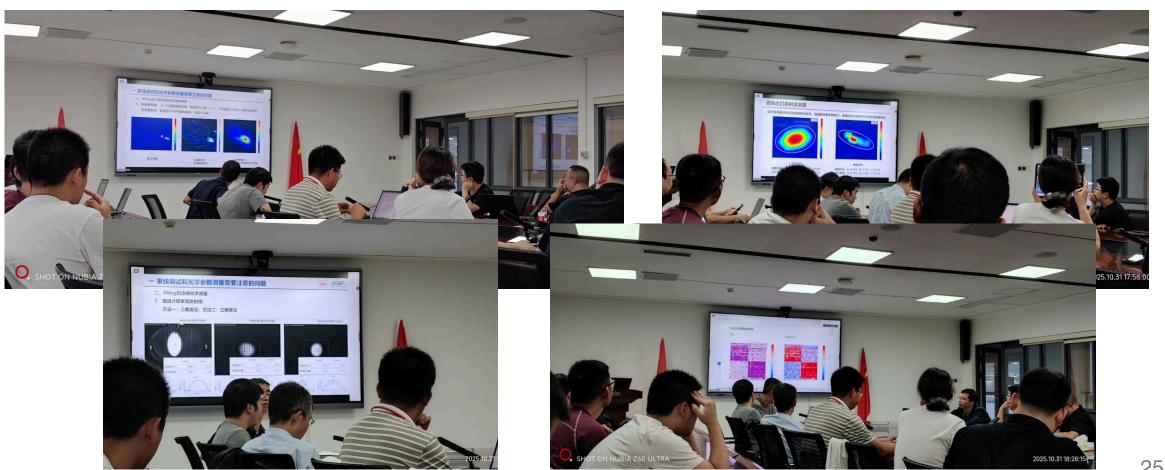
Slow extraction: 3 sec extraction time with a repetition period of 13 s


Fast extraction: High-intensity pulsed p/ion

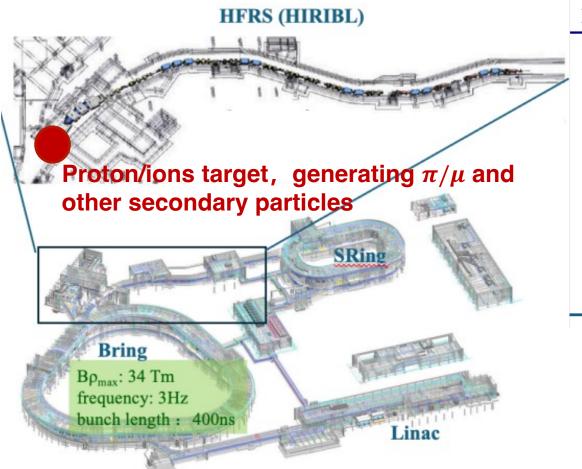

Slow extraction: Quasi-continuous p/ion


	34Tm, 3Hz		
Ions	Particle per	Energy(Ge	
10115	pulse (ppp)	V/u)	
$^{238}U^{35+}$	1.0×10 ¹¹	0.84	
²⁰⁹ Bi ²⁷⁺	1.2×10 ¹¹	0.85	
⁷⁸ Kr ¹⁹⁺	3.0×10 ¹¹	1.7	
¹⁸ O ⁶⁺	6.0×10 ¹¹	2.6	
Proton	2.0×10 ¹²	9.3	

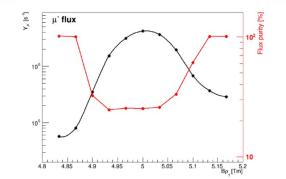

First beam commissioning achieved on 28th October



the first signal ¹⁸O at B-ring

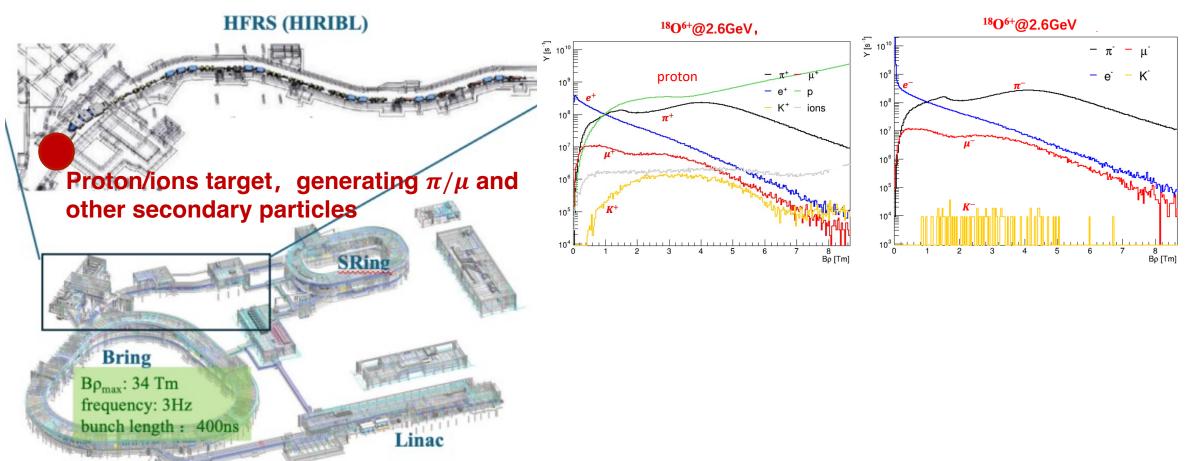


Discussions on the first beam commissioning result

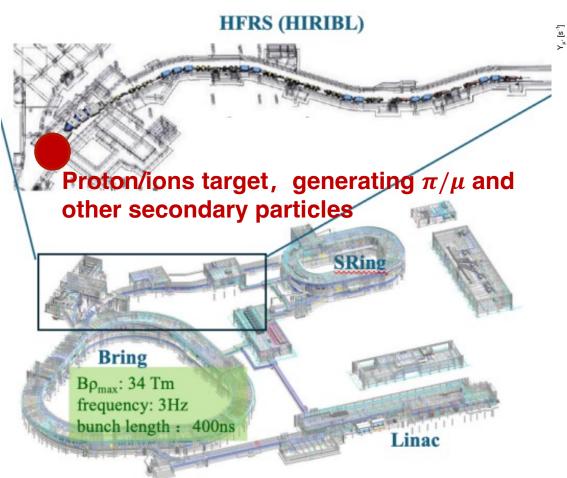

HFRS (HIRIBL)

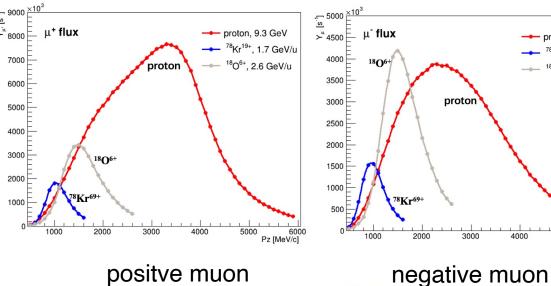
The world's longest and highest magnetic rigidity radioactive beam-line

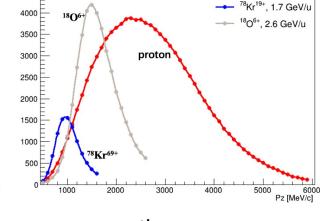
Pre-Separator D2 TQ4 TQ5 D3 TQ6 TQ7 TQ8 TQ9 PF1 PF2 PF3 PF4 (MF0) MF1 MF2 MF3 MF4 MF5 MF6


Parameters of HIRIBL compared with others						
	Length (m)	Beam size at target (mm)	Angular acceptance(mrad)	Momentum acceptance (%)	Resolving power	Max. Βρ (Tm)
HIRIBL NIM.B 547(2024),165214	191.38	±1/±1.5	±30 (X); ±25 (Y)	±2.0	850/1100 (ΔX=±1mm)	25
SuperFRS NIM.B 204(2003),71	182.2	±1/±2	±40 (X); ±20 (Y)	±2.5	750/1500 (ΔX=±1mm)	20
BigRIPS Prog.Theor.EXP.Phys.2012,0 3C003	78.2	±0.5/±0.5	±40 (X); ±50 (Y)	±3	1260/3420 (ΔX=±0.5mm)	9.5
ARIS NIM.B 317(2013), 349	86.8	±0.5/±0.5	±40 (X); ±40 (Y)	±5	1720/3000 (ΔX=±0.5mm)	8

Yu Xu @ MIP2025


HFRS (HIRIBL)


The world's longest and highest magnetic rigidity radioactive beam-line



HFRS (HIRIBL)

The world's longest and highest magnetic rigidity radioactive beam-line

positve muon

Maximum μ^+ flux: 8.2×10⁶/s •

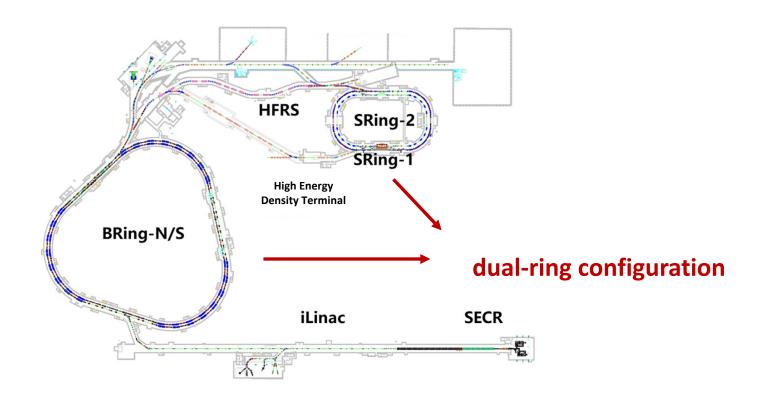
projectile: proton

Pz: 3.5 GeV/c

w/ purification: 2.4×10^5 /s

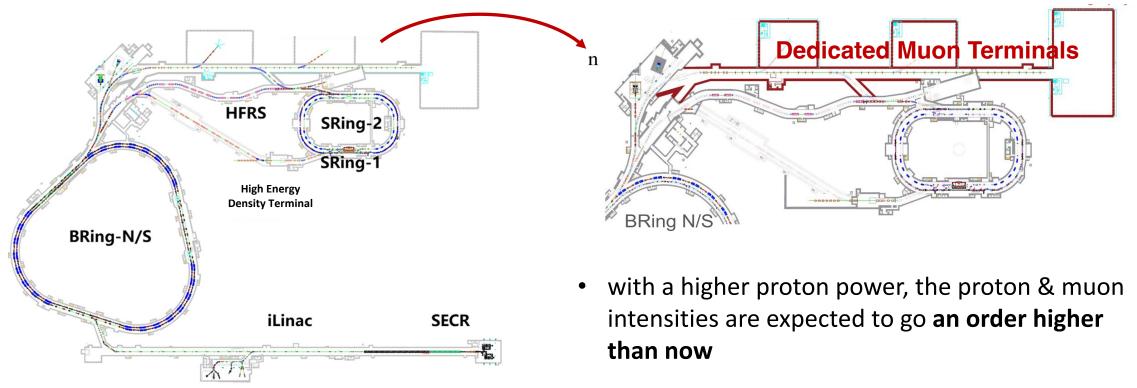
Maximum μ^- flux: $4.2 \times 10^6/s$

projectile: ¹⁸O⁶⁺


Pz: 1.5 GeV/c

w/ purification: 3.7×10^5 /s

proton, 9.3 GeV


HIAF-U

• An upgrade planned for the second phase of HIAF, aims to increase the proton energy from 9 to **25 GeV**, with a dedicated muon beamline in the design.

HIAF-U

 An upgrade planned for the second phase of HIAF, aims to increase the proton energy from 9 to 25 GeV, with a dedicated muon beamline in the design.

Muon beams comparison

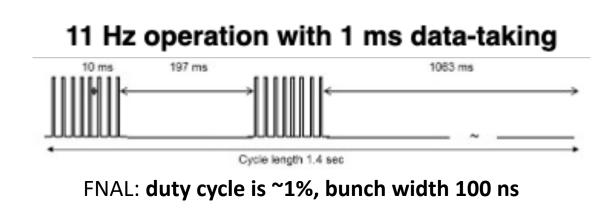
The only (?) facility worldwide planning a GeV-scale high-intensity pulsed μ^-

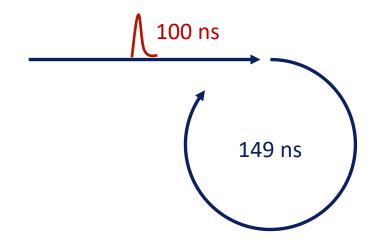
TABLE I. Comparison of muon beam parameters at Fermilab and HIAF

	Fermilab	HIAF	HIAF-U
Proton Intensity (/s)	6.8×10^{13}	5×10^{13}	4×10^{14}
Proton energy (GeV/u)	8.0	9.1	25
Repetition frequency (Hz)	15	3	10
Proton bunch time width (ns)	100	100-400 (TBD)	TBD
Muon intensity [/s]	5×10 ⁶	$\approx 4 \times 10^6$	$\approx 4 \times 10^7 \ (?)$
Muon energy (for $g-2$)	3.1 GeV/c	2 – 4 GeV/c	10 - 20 GeV/c
Muon momentum spread (%)	2%	2%-3%	TBD

→ Currently intensity at HIAF is comparable to FNAL, while HIAF-U would very likely surpass it.

11/14/25

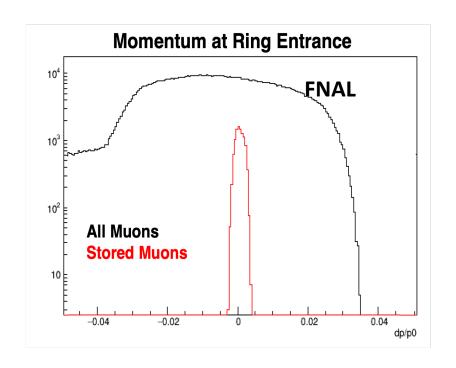

- 1 Higher energy (higher γ)
- The statistical precision of ω_a :


$$rac{\Delta\omega_a}{\omega_a} \propto rac{1}{m{\gamma BP}\sqrt{N}}$$

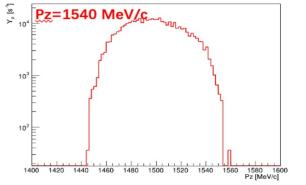
	FNAL	J-PARC	HIAF	HIAF-U
γ	30	3	20 – 40 (2-4 GeV)	150 (15 GeV)
В	1.5 T	3 T	3 T or higher	6 – 15 T?
P	100%	50%	100%	100%
N required to achieve the same precision in $\Delta \omega_a/\omega_a$	N	100 N	N/4	N/500

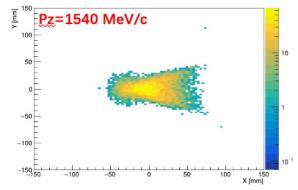
2 Time structure

- High-intensity pulsed muons evenly spaced in time, maximize the number of bunches (high-repetition rate; 3Hz is not very good)
- Each bunch should be as short in duration width as possible
 - The injection must be completed before the bunch finishes one full turn in the ring;
 - bunch time < cyclotron period → at Fermilab this condition is 100 ns < 149 ns.


2 Time structure

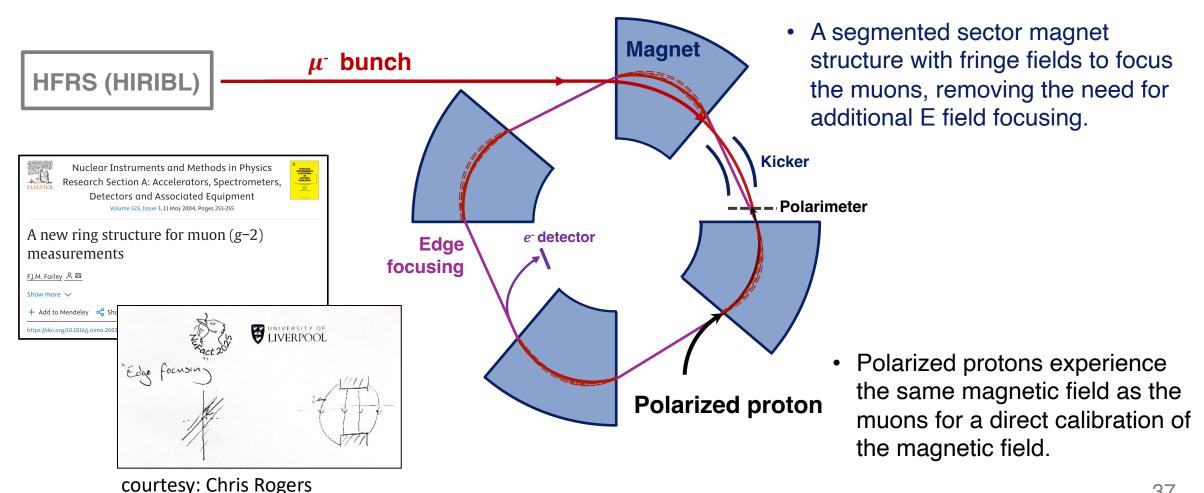
- High-intensity pulsed muons evenly spaced in time, maximize the number of bunches (high-repetition rate; 3Hz is not very good)
- Each bunch should be as short in duration width as possible
 - The injection must be completed before the bunch finishes one full turn in the ring;
 - bunch time < cyclotron period → at Fermilab this condition is 100 ns < 149 ns.
 - This subsequently determines the acceptable B field:


$$T=rac{2\pi\gamma m_{\mu}}{qB}$$
 $\gamma{\sim}30$ (3GeV) and B ${\sim}3T
ightarrow$ T = 70 ns a very challenging condition


3 Momentum spread

 For FNAL g-2, The momentum acceptance is narrow ('magic momentum'), making the injection efficiency is roughly 2-3%.

Currently, simulation at HIAF shows a similar momentum spread → We'd expect a similar injection efficiency but there's room for improvement (next slides).



CANTON-μ Proposal

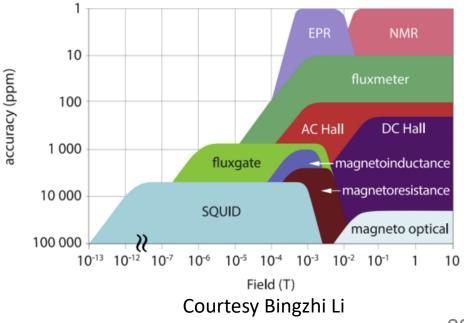
Creative Anomalous magNetic momenT Observation with Negative-muon

 We propose using HIAF's muon beam for muon g-2 measurement, featuring an independent approach that prioritizes negative muons and targets a final precision surpassing FNAL's 0.13 ppm.

Concept A output output co-magnetometer output end output end output co-magnetometer output output

37

Details


- A 3 6 T B-field → radii of about 7 m 3 m
 - Small volume easier for field uniformity → a reduced systematics;
 - Challenging due to the limit of upstream bunch width;

 p_3 p_1

- A strict momentum acceptance is relaxed
 - Muons of different momenta experience exactly the same spin evolution after one full turn in the magnetic field;
 - The injection efficiency could be greatly improved from FNAL's 2-3%
- No inflector needed → only need to design kicker(s)

B-field calibration sytematics

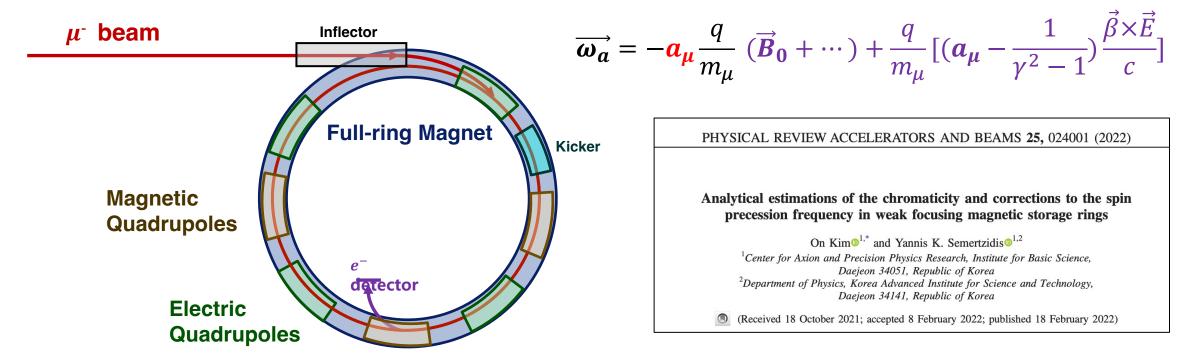
- Forseenably, one big challenge is the segment magnets its fabrication and the related field calibration (with polarized protons)
- First thing demonstrate it really works!
- Polarized protons: essentially a denser form of the NMR probe.
 - Fringe fields with large gradients confined to limited regions where NMR fails;
 - The proton approach could be combined with conventional methods — EPR probes or machine-learning-based fitting — to further improve the precision.

Other sytematics

0	Correction	Uncertainty
Quantity	(ppb)	(ppb)
ω_a^m (statistical)		114
ω_a^m (systematic)	• • •	30
$egin{array}{ccc} C_e & {\sf Electric\ Field} \ C_p & {\sf Pitch} \ \end{array}$	347	27
C_p Pitch	175	9
C_{pa} Phase Acceptance	-33	15
C_{dd} Differential Decay	26	27
C_{ml} Muon Loss	0	2
$\langle \omega_p' \times M \rangle$ (mapping, tracking)		34
$\langle \omega_p' \times M \rangle$ (calibration)		34
B_k Transient Kicker	-37	22
B_q Transient ESQ	-21	20
$\overline{\mu_p'/\mu_B}$		4
m_{μ}/m_e		22
Total systematic for \mathcal{R}'_{μ}		76
Total for a_{μ}	572	139

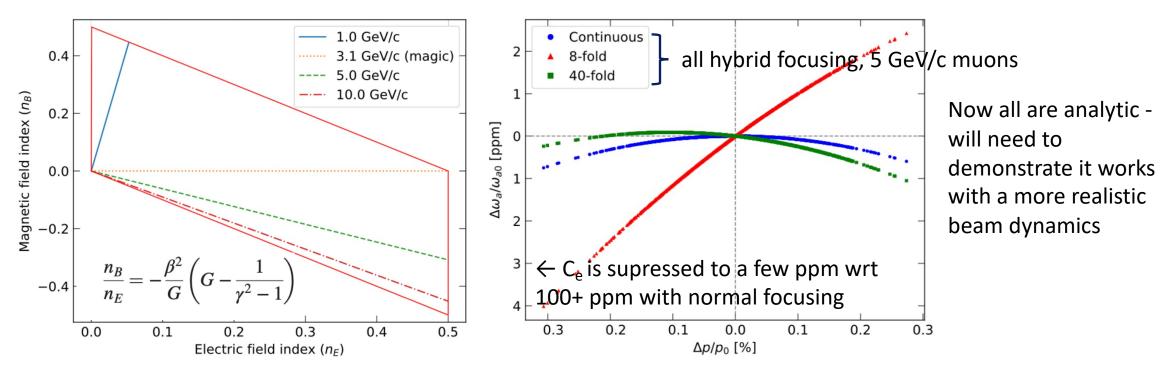
- Removing the E-field would improve the systematics for both ω_a and ω_p
 - For both it stands as one of the largest uncertainty sources
- New systematics at B-field (protons, calibration etc)
 - Remove the dominant part currently and distribute the new systematic effects to the magnetic field part, which has more 'buffer' in the systematics chart

Phase-II: upgrade with 10-20 GeV muon


- With a higher muon energy (and subsequently a higher B-field), the statistical sensitivity won't be a problem at all:
 - A 15 GeV muon with 15 T B-field → N/500;
 - A systematics-limited, and truely next generation g-2 experiment: driving advances in theory and techs.
- Being free from statistical limits opens a new window:
 - Pencil beam with a direct collimator: a better systematics related to beam dynamics – CBO, field mapping etc.
 - clock/counter-clock wise measurements
- Others: a dedicated muon beam-line with a delivery ring?

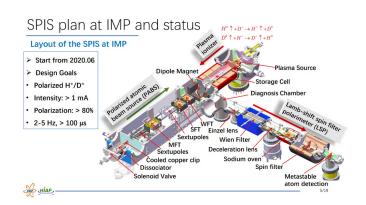
Comparisons

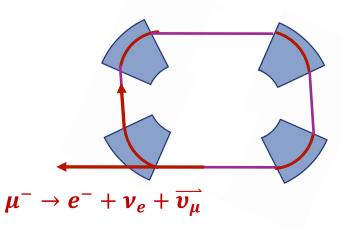
Facilities	CERN/BNL/FNAL	J-PARC	HIAF (HIAF-U)
Muon momentum	3.1 GeV/c	300 MeV/c	Flexible 2-4 GeV (HIAF) 10-20 GeV (HIAF-U)
Magnet	Full-ring magnet	Full-ring magnet	Sector magnet
Storage	B-field & E-field	B-field	Edge B-field focusing w/o E-field
Field calibration	NMR calibration	NMR calibration	Calibration via polarized proton and other methods
Data taking	650 days (FNAL)	> 300 days (expected)	100-200 days
Precision	μ^{+} : 0.14 ppm (FNAL) μ^{-} : 0.7 ppm (BNL)	μ^{+} : 0.46 ppm \rightarrow ~0.1ppm	μ^{-}/μ^{+} : 0.1 ppm \rightarrow 0.05 ppm


Concept B – Hybrid weak focusing

• A hybrid focusing system with E-quadrupoles and B-quadrupoles, using higher-order B fields to compensate for higher-order E-fields:

Concept B – Hybrid weak focusing


Details



- In principle it's straightforward to recycle the magnet from FNAL
- If Concept A turns to be too challenging, one could start with a more traditional version here.

Comments and feedbacks

- The biggest 'showstopper' I've received so far is still the question about the physics motivation. *Case closed* this is the external perception of g-2.
- Some physics & techinical connections
 - Polarized protons: synergy with the Electron-ion collider in China (EicC)
 - Proton EDM?
 - Neutrino factory?
 - •

Outlook

- Draft proposal to arXiv soon;
- More detailed feasibility studies: the storage ring design, beam dynamics simulaiton, new systematics estimation, ...
- More possibilities on physcis & technical connections;

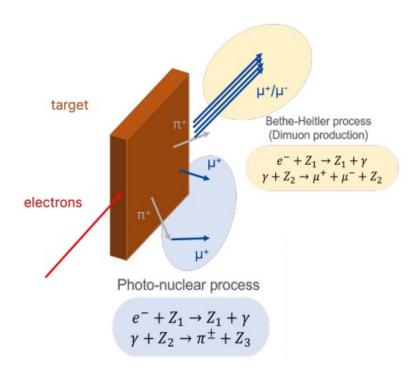
- Long-term vision (still a bit of a dream at this stage!): CDR, TDR, ...
 - The decision would also depend on the progress from the theory side

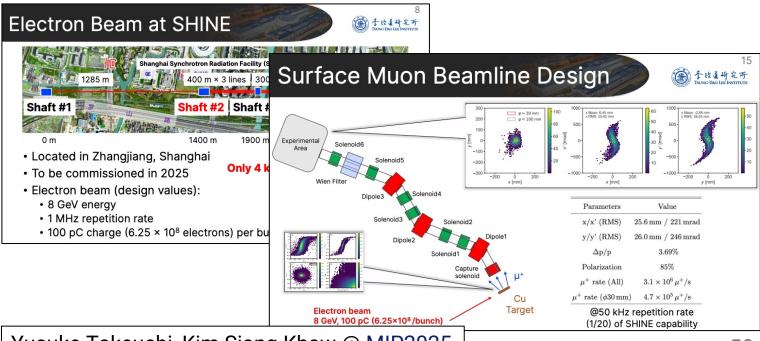
11/14/25 46

Summary

- We propose a new muon g-2 experiment, CANTON- μ , at China's HIAF, whose muon beams perfectly meet the needs for g-2 a GeV-scale, high-intensity pulsed muons.
- The new experimental concept goes beyond the magic momentum constraint, enabling higher statistical precision and largely removing E-field systematics:
 - Phase I: 2-4 GeV muons aiming at 0.1 ppm precision (comparable to FNAL);
 - Phase II: 10–20 GeV muons aiming at 0.05 ppm precision, 3x better than FNAL.
- making it truly a next-generation muon g-2 experiment.

Summary

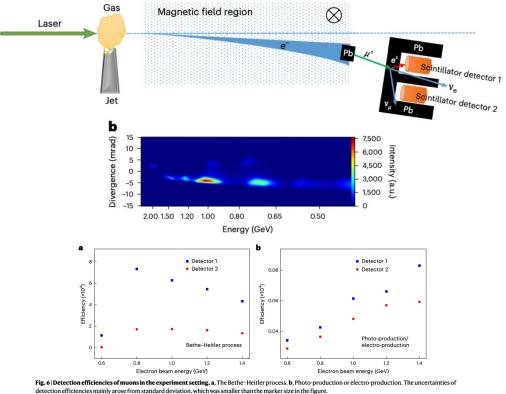

- The whole thing still at a very early stage many feasibility studies to be done.
- The facility is under commissioning muons are expected within 2-3 years.


- We hope to make muon g-2 the flagship experiment at HIAF it's a long-term journey, any support and ideas along the way would be greatly appreciated.
- Good synergies with new initiatives at PSI/BNL/... as seen in this workshop!

· Thanks!

Backup

- 1 Shanghai source
- Electron as a potential driver for muon sources
- Feature: high-repetition rate pulsed beam



- 1 Shanghai source
- Electron as a potential driver for muon sources more efforts:

nature physics Article https://doi.org/10.1038/s41567-025-02872-2 Proof-of-principle demonstration of muon production with an ultrashort high-intensity laser

Received: 7 September 2024	Feng Zhang ^{© 1,11} , Li Deng ^{© 2,3,11} , Yanjie Ge ^{© 4,5,11} , Jiaxing Wen ¹ , Bo Cui ^{© 1} ,
Accepted: 10 March 2025	Ke Feng ® ⁴ , Hao Wang ® ⁴ , Chen Wu ® ^{6,7} , Ziwen Pan ® ⁸ , Hongjie Liu ¹ ,
	Zhigang Deng¹, Zongxin Zhang 💇 ⁴, Liangwen Chen 💇 ²³.9, Duo Yan²³.9,
Published online: 6 May 2025	Lianqiang Shan ¹ , Zongqiang Yuan ¹ , Chao Tian ¹ , Jiayi Qian ⁶ , Jiacheng Zhu ⁶
Check for updates	Yi Xu 🖲 4, Yuhong Yu 🖲 2.39, Xueheng Zhang 2.39, Lei Yang 2.39, Weimin Zhou 🕞 1 🖂 Yuqiu Gu 🗓 1 🦳 Wentao Wang 🐧 1 🖂, Yuxin Leng 📵 4, Zhiyu Sun 📵 2.3.9 &
	Ruxin Li © ^{4,5,10}

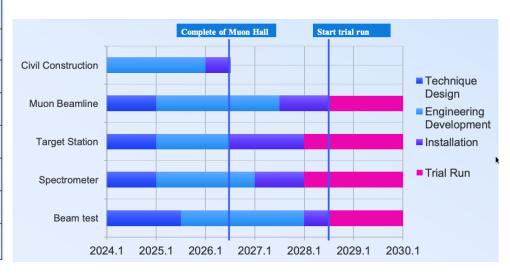
Zhang, F., Deng, L., Ge, Y. *et al.* Proof-of-principle demonstration of muon production with an ultrashort high-intensity laser. *Nat. Phys.* **21**, 1050–1056 (2025). https://doi.org/10.1038/s41567-025-02872-2

2 CSNS (The China Spallation Neutron Source)

A facility managed by iHEP

Accelerator: 170kW 25Hz 1.6GeV proton beam

Neutron Spectrometers: 9 built and 2 under construction


Yu Bao, ECJ workshop @ Shanghai

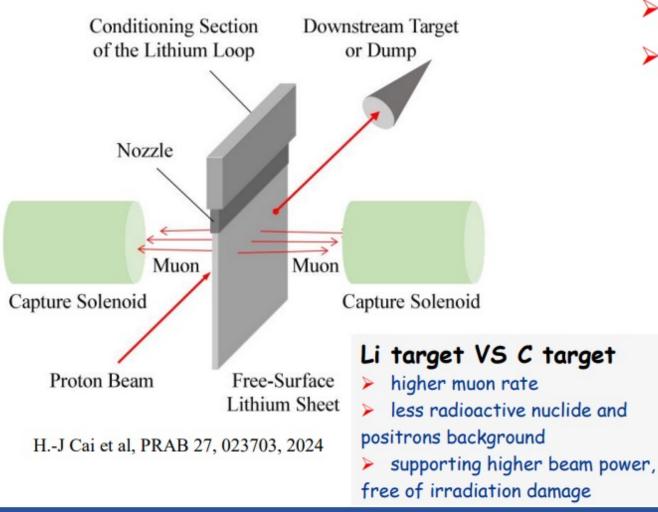
2 CSNS (The China Spallation Neutron Source)

Design Parameters

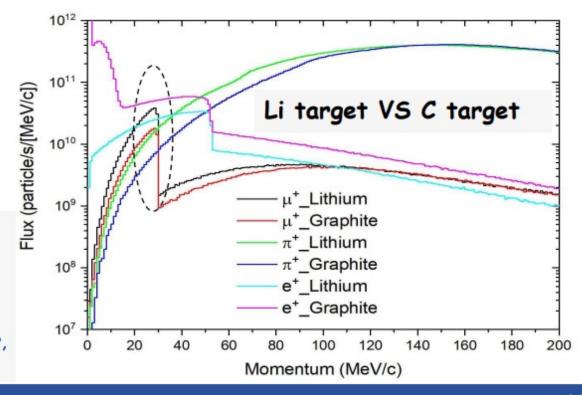
Proton driver	Power	Repetition	Energy	Time Structure	σ_{x}	σ_{y}
Proton driver	20 kW	1 Hz	1.6 GeV	120ns/409ns	3.1 mm	8.5 mm
Muon beam	Surface Muon (SMBT)		Negative Muon (NMBT)		Decay Muon (DMBT)	
Momentum	28 MeV/c		28 MeV/c		20~120 MeV/c	
dp/p	6	<mark>%</mark>		13%	8% @ 120 MeV/c	
Beam spot	<mark>Ф10mm-Ф100mm</mark>		Ф100mm		Ф30mm	
Intensity	10 ⁵ -10 ⁷ μ ⁺ /s		4×10 ⁵ μ ⁻ /s		4×10 ⁶ μ ⁺ /s	
Polarization	<mark>> 95%</mark>		~ 20 %		> 70%	
Pulse width	130 ns (SP) ~ 520ns (DP)		520 ns		130 ns (SP) ~ 520ns (DP)	
	Segments	Asymmetry	Count Rate	FOM: A ² *R	Temperature	LF/TF
Spectrometer	1584/3024*	~0.3	38/76* MEv/h	2.9/5.8*	2K ~ 300K	5000 G/ 400 G

Yu Bao, ECJ workshop @ Shanghai

11/14/25 53



Liquid lithium jet target (Phase II)

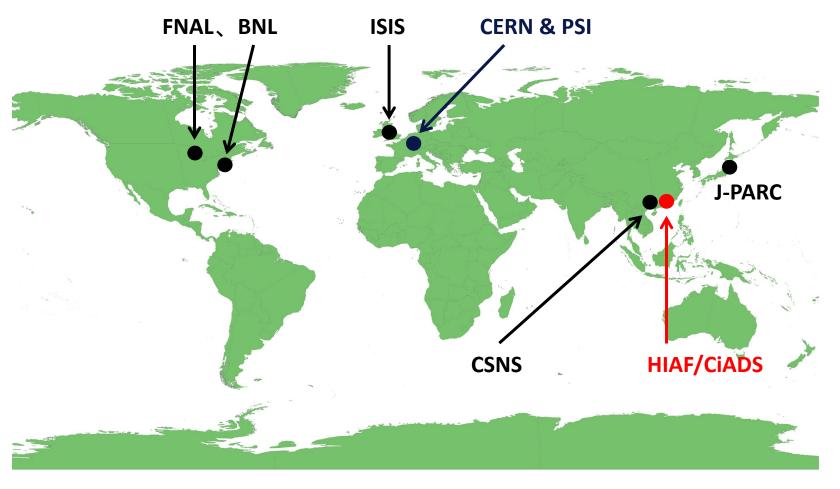


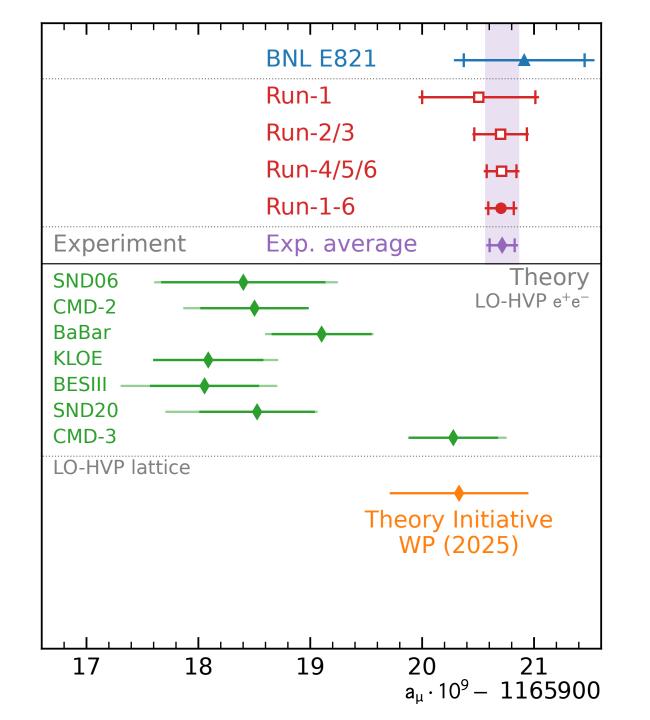
Concept of lithium jet target

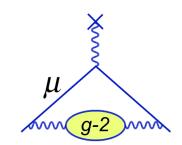
☐ Design parameters:

- > 3MW proton beam on target: 600MeV & 5mA
- Muon rate from target of $\sim 10^{11} \,\mu^+/s$

Muon beam comparison

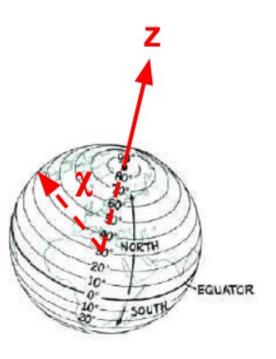

Facility	Status
BNL	No muon beam available post BNL g-2
FNAL	No muon beam post g-2, now focusing on mu2e and neutrino
CERN	Muon beams at 150+GeV, focusing on target experiments (NA64, MUonE)
J-PARC	Low-energy muon beam; no plan for muon beam at main ring
PSI	Low-energy muon beam;
ISIS	Low-energy muon beam;


HIAF's GeV-scale, high-intensity pulsed μ^{-} beam — perhaps the only one in the next 20 years (?)


Proton accelerator based muon source

Low energy O(MeV)
ISIS
PSI
J-PARC
CSNS
CiADS

High energy O(GeV+)
FNAL
BNL
CERN
HIAF


CPTLV: SME and Muon g-2

SME Lagrangian:

$$\mathcal{L}' = -a_{\kappa}\bar{\psi}\gamma^{\kappa}\psi - b_{\kappa}\bar{\psi}\gamma_{5}\gamma^{\kappa}\psi - \frac{1}{2}H_{\kappa\lambda}\bar{\psi}\sigma^{\kappa\lambda}\psi + \frac{1}{2}ic_{\kappa\lambda}\bar{\psi}\gamma^{\kappa}D^{\lambda}\psi + \frac{1}{2}id_{\kappa\lambda}\bar{\psi}\gamma_{5}\gamma^{\kappa}D^{\lambda}\psi$$

- All terms violate Lorentz invariance
- a_{κ} , b_{κ} are CPT-odd; others are CPT-even
- Predicts two CPT/Lorentz Violating signatures for muon g-2:
 - Gomes, Kostelecky, Vargas, Phys.Rev.D90:076009,2014
 - Sidereal (or annual) variation in ω_a
 - Difference in ω_a between μ^+ / μ^-
 - Use frame where Z is the orientation of the earth's axis relative to the fixed, distant stars, and χ is the colatitude (earth's precession negligible in our case)

SME Muon Sector Current Limits (Kostelecký et.al.)

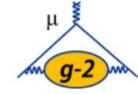


Table D21. Muon sector, d = 3

Combination	Result	System	Ref.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$< 2 \times 10^{-22} \text{ GeV}$ $< 7 \times 10^{-23} \text{ GeV}$	Muonium spectroscopy	[20]* [20]*
$b^T/m_{\mu} \ b_Z$	$(7.3 \pm 5.0) \times 10^{-7}$ $-(1.0 \pm 1.1) \times 10^{-23} \text{ GeV}$	Muon decay BNL $g_{\mu} - 2$	[184]* [185]
$\sqrt{(\check{b}_{X}^{\mu^{+}})^{2}+(\check{b}_{Y}^{\mu^{+}})^{2}}$	$<1.4\times10^{-24}~{\rm GeV}$	"	[185]
$\sqrt{(\check{b}_{X}^{\mu^{-}})^{2}+(\check{b}_{Y}^{\mu^{-}})^{2}}$	$< 2.6 \times 10^{-24} \; \mathrm{GeV}$	"	[185]
$\sqrt{(\tilde{b}_X)^2+(\tilde{b}_Y)^2}$	$<2\times10^{-23}~{ m GeV}$	Muonium spectroscopy	[186]
$b_Z - 1.19(m_\mu d_{Z0} + H_{XY})$	$(-1.4 \pm 1.0) \times 10^{-22} \text{ GeV}$	BNL, CERN $g_{\mu}-2$ data	[187]
b_Z	$(-2.3 \pm 1.4) \times 10^{-22} \text{ GeV}$	CERN $g_{\mu} - 2$ data	[187], [188]
$ \operatorname{Re} H_{011}^{(3)(0B)} , \operatorname{Im} H_{011}^{(3)(0B)} $	$< 5 \times 10^{-23} \; \mathrm{GeV}$	"	[20]*
$\check{H}_{010}^{(3)}$	$(-1.6 \pm 1.7) \times 10^{-22} \text{ GeV}$	BNL, CERN $q_{\mu} - 2$ data	[20]*
$ \operatorname{Re} \widecheck{H}_{011}^{(3)} , \ \operatorname{Im} \widecheck{H}_{011}^{(3)} $	$< 2.0 \times 10^{-24} \; \mathrm{GeV}$	BNL $g_{\mu}-2$	[20]*
$m_{\mu}d_{Z0} + H_{XY}$	$(1.8 \pm 6.0) \times 10^{-23} \text{ GeV}$	"	[185]