

The Axion Window on Low-Energy Precision Physics

4th Liverpool Workshop on Muon Precision Physics 2025

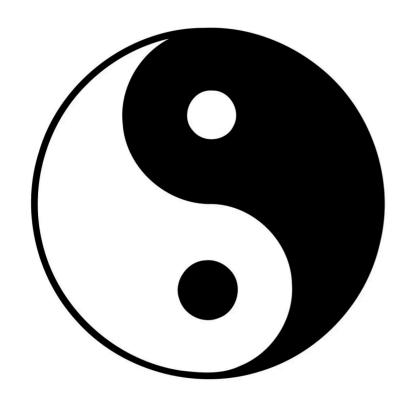
Luca Di Luzio

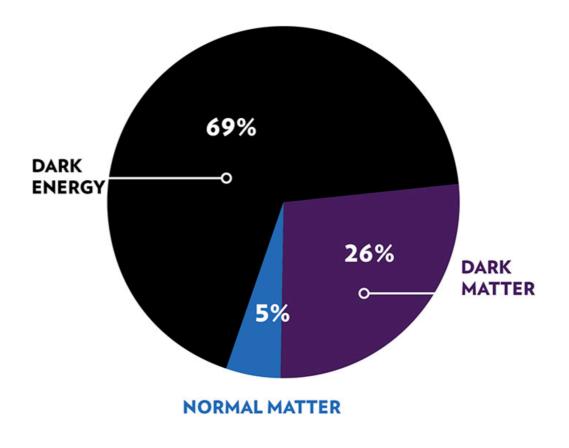
Work supported by the European Union - Next Generation EU and by the Italian Ministry of University and Research (MUR) via the PRIN 2022 project n. 2022K4B58X - AxionOrigins

The QCD axion

Strong CP problem

Dark Matter





• Introduced to address the strong CP problem

[Peccei, Quinn '77, Weinberg '78, Wilczek '78]

$$\delta \mathcal{L}_{ ext{QCD}} = heta rac{g_s^2}{32\pi^2} G ilde{G}$$

$$|\theta| \lesssim 10^{-10}$$

(bound from nEDM)

• Introduced to address the strong CP problem

[Peccei, Quinn '77, Weinberg '78, Wilczek '78]

$$\delta \mathcal{L}_{ ext{QCD}} = heta rac{g_s^2}{32\pi^2} G ilde{G}$$

$$|\theta| \lesssim 10^{-10}$$

(bound from nEDM)

- Naive Dimensional Analysis:

$$\mathcal{L} = -d_n \, \frac{i}{2} \overline{n} \sigma^{\mu\nu} \gamma_5 n F_{\mu\nu} \qquad \iff \qquad H = -d_n \, \mathbf{E} \cdot \hat{\mathbf{S}}$$

$$H = -d_n \, \mathbf{E} \cdot \hat{\mathbf{S}}$$

• Introduced to address the strong CP problem

[Peccei, Quinn '77, Weinberg '78, Wilczek '78]

$$\delta \mathcal{L}_{ ext{QCD}} = heta rac{g_s^2}{32\pi^2} G ilde{G}$$

$$|\theta| \lesssim 10^{-10}$$

(bound from nEDM)

- Naive Dimensional Analysis:

$$\mathcal{L} = -d_n \, \frac{i}{2} \overline{n} \sigma^{\mu\nu} \gamma_5 n F_{\mu\nu} \qquad \iff \qquad H = -d_n \, \mathbf{E} \cdot \hat{\mathbf{S}}$$

$$H = -d_n \mathbf{E} \cdot \hat{\mathbf{S}}$$

$$\frac{e}{m_n} \overline{n} \sigma^{\mu\nu} \gamma_5 n F_{\mu\nu} + \text{h.c.}$$

Introduced to address the strong CP problem

[Peccei, Quinn '77, Weinberg '78, Wilczek '78]

$$\delta \mathcal{L}_{ ext{QCD}} = heta rac{g_s^2}{32\pi^2} G ilde{G}$$

$$|\theta| \lesssim 10^{-10}$$

(bound from nEDM)

- Naive Dimensional Analysis:

$$\mathcal{L} = -d_n \, \frac{i}{2} \overline{n} \sigma^{\mu\nu} \gamma_5 n F_{\mu\nu} \qquad \iff \qquad H = -d_n \, \mathbf{E} \cdot \hat{\mathbf{S}}$$

$$H = -d_n \, \mathbf{E} \cdot \hat{\mathbf{S}}$$

$$\left(1 - c\frac{m_q}{2m_n}e^{i\theta}\right)\frac{e}{m_n}\overline{n}\sigma^{\mu\nu}\gamma_5 nF_{\mu\nu} + \text{h.c.} \qquad d_n = c\frac{m_q}{m_n}\frac{e}{m_n}\theta$$

$$d_n = c \frac{m_q}{m_n} \frac{e}{m_n} \theta$$

Introduced to address the strong CP problem

[Peccei, Quinn '77, Weinberg '78, Wilczek '78]

$$\delta \mathcal{L}_{ ext{QCD}} = heta rac{g_s^2}{32\pi^2} G ilde{G}$$

$$|\theta| \lesssim 10^{-10}$$

(bound from nEDM)

- Naive Dimensional Analysis:

$$\mathcal{L} = -d_n \, \frac{i}{2} \overline{n} \sigma^{\mu\nu} \gamma_5 n F_{\mu\nu} \qquad \iff \qquad H = -d_n \, \mathbf{E} \cdot \hat{\mathbf{S}}$$

$$H = -d_n \, \mathbf{E} \cdot \hat{\mathbf{S}}$$

$$\left(1 - c \frac{m_q}{2m_m} e^{i\theta}\right) \frac{e}{m_m} \overline{n} \sigma^{\mu\nu} \gamma_5 n F_{\mu\nu} + \text{h.c.}$$

$$\left(1 - c \frac{m_q}{2m_n} e^{i\theta}\right) \frac{e}{m_n} \overline{n} \sigma^{\mu\nu} \gamma_5 n F_{\mu\nu} + \text{h.c.} \qquad d_n = c \frac{m_q}{m_n} \frac{e}{m_n} \theta \sim 10^{-16} \theta e \text{ cm}$$

 $|d_n^{\text{exp}}| < 1.8 \cdot 10^{-26} \ e \ \text{cm} \ (90\% \ \text{CL})$

[Abel et al, Phys. Rev. Lett. 124 (2020) 081803]

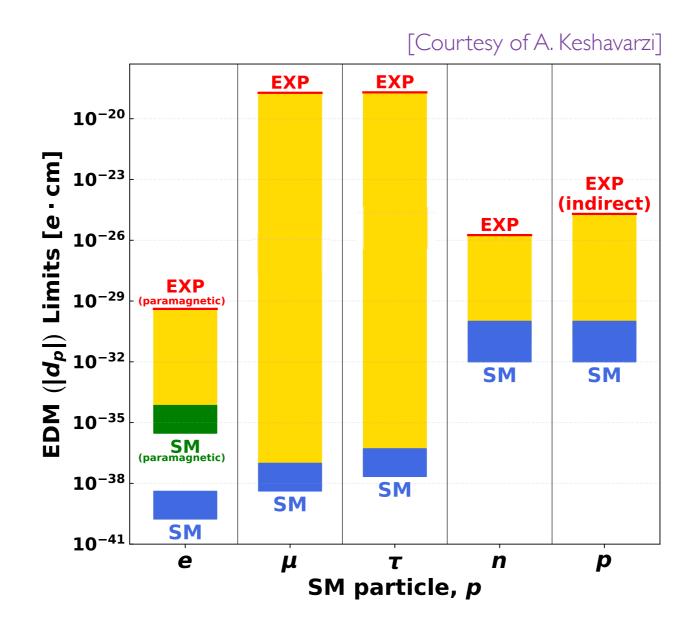
• Introduced to address the strong CP problem

[Peccei, Quinn '77, Weinberg '78, Wilczek '78]

$$\delta \mathcal{L}_{ ext{QCD}} = heta rac{g_s^2}{32\pi^2} G ilde{G}$$

$$|\theta| \lesssim 10^{-10}$$

(bound from nEDM)



• Introduced to address the strong CP problem

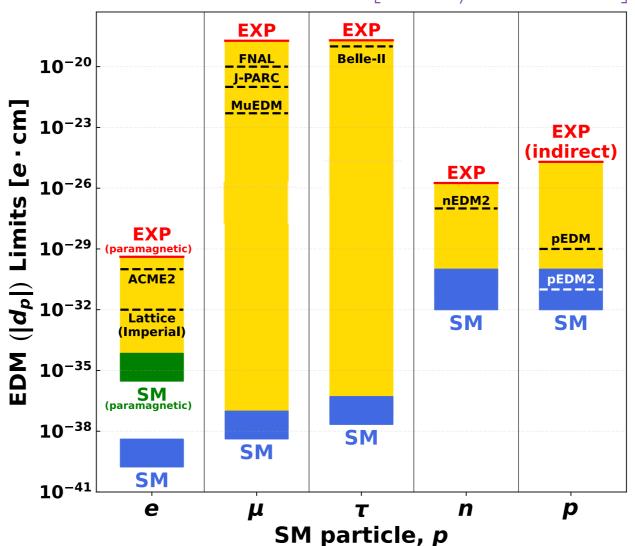
[Peccei, Quinn '77, Weinberg '78, Wilczek '78]

$$\delta \mathcal{L}_{\mathrm{QCD}} = \theta \frac{g_s^2}{32\pi^2} G\tilde{G}$$

$$|\theta| \lesssim 10^{-10}$$

(bound from nEDM)

[Courtesy of A. Keshavarzi]

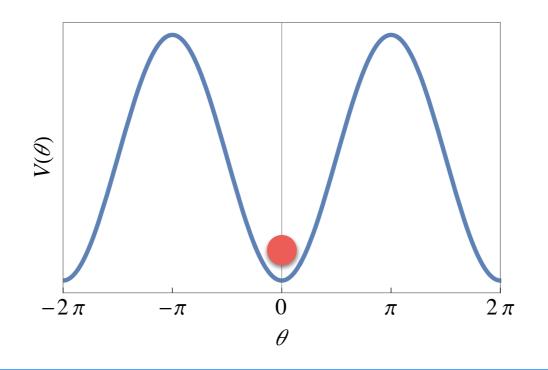


Introduced to address the strong CP problem

[Peccei, Quinn '77, Weinberg '78, Wilczek '78]

$$\delta \mathcal{L}_{ ext{QCD}} = heta rac{g_s^2}{32\pi^2} G ilde{G}$$

- promote θ to a dynamical field (axion): $\theta \to \frac{a}{f_a}$
- acquires a QCD potential and relaxes dynamically to zero

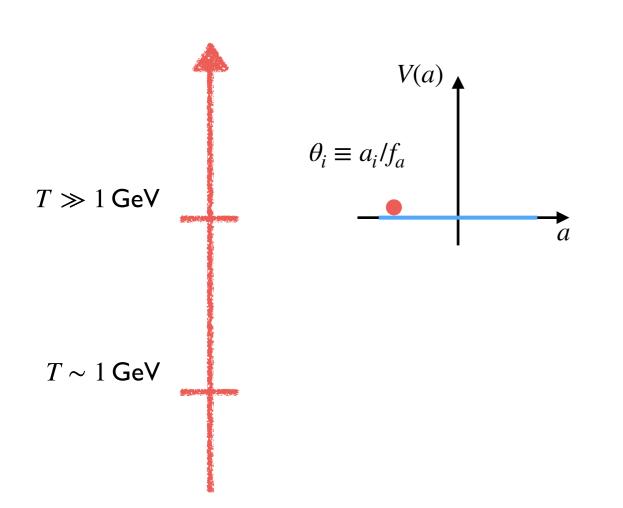


- ullet Unavoidably contributes to $\Omega_{
 m DM}$
 - i) misalignment mechanism (axion oscillations)

[Preskill, Wise, Wilczek '83, Abbott, Sikivie '83, Dine, Fischler '83]

$$\ddot{a} + 3H\dot{a} + m_a^2(T)f_a \sin\left(\frac{a}{f_a}\right) = 0$$

- ullet Unavoidably contributes to $\Omega_{
 m DM}$
 - i) misalignment mechanism (axion oscillations)



[Preskill, Wise, Wilczek '83, Abbott, Sikivie '83, Dine, Fischler '83]

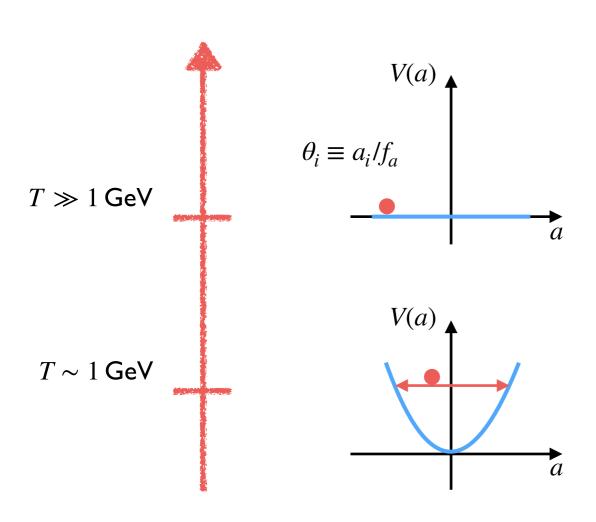
$$\ddot{a} + 3H\dot{a} + m_a^2(T)f_a \sin\left(\frac{a}{f_a}\right) = 0$$

$$(T \gg T_c \approx 150\,\text{MeV})$$

$$m_a^2(T) \approx m_a^2\left(T/T_c\right)^{-8}$$

[Axion mass at finite T from lattice QCD inputs - see e.g. Borsanyi et al 1606.07494]

- ullet Unavoidably contributes to $\Omega_{
 m DM}$
 - i) misalignment mechanism (axion oscillations)



[Preskill, Wise, Wilczek '83, Abbott, Sikivie '83, Dine, Fischler '83]

$$\ddot{a} + 3H\dot{a} + m_a^2(T)f_a \sin\left(\frac{a}{f_a}\right) = 0$$

$$\Omega_a h^2 \approx 0.12 \left(\frac{6\,\mu\text{eV}}{m_a}\right)^{1.16} \theta_i^2$$

$$\left. \frac{a(t)}{f_a} \right|_{\text{today}} \sim \sqrt{\frac{2\rho_{\text{DM}}}{m_a^2 f_a^2}} \cos(m_a t)$$

$$10^{-18}$$

- ullet Unavoidably contributes to Ω_{DM}
 - i) misalignment mechanism (axion oscillations)
 - ii) topological defects (axion strings, ...) [Davies '86, Harari Sikivie '87, ...]

absent if PQ symmetry is broken before inflation (Pre-inflation)

- ullet Unavoidably contributes to $\Omega_{
 m DM}$
 - i) misalignment mechanism (axion oscillations)
 - ii) topological defects (axion strings, ...)

post-inflationary PQ breaking

pre-inflationary PQ breaking

$$f_a < \max\{H_I, T_R\}$$

$$\langle \theta_i \rangle = \frac{\pi}{\sqrt{3}}$$

$$\Omega_a^{\rm mis} < \Omega_{\rm DM}$$

$$m_a \gtrsim 30 \,\mu\text{eV}$$

+ contribution from topological defects

$$f_a > \max\{H_I, T_R\}$$

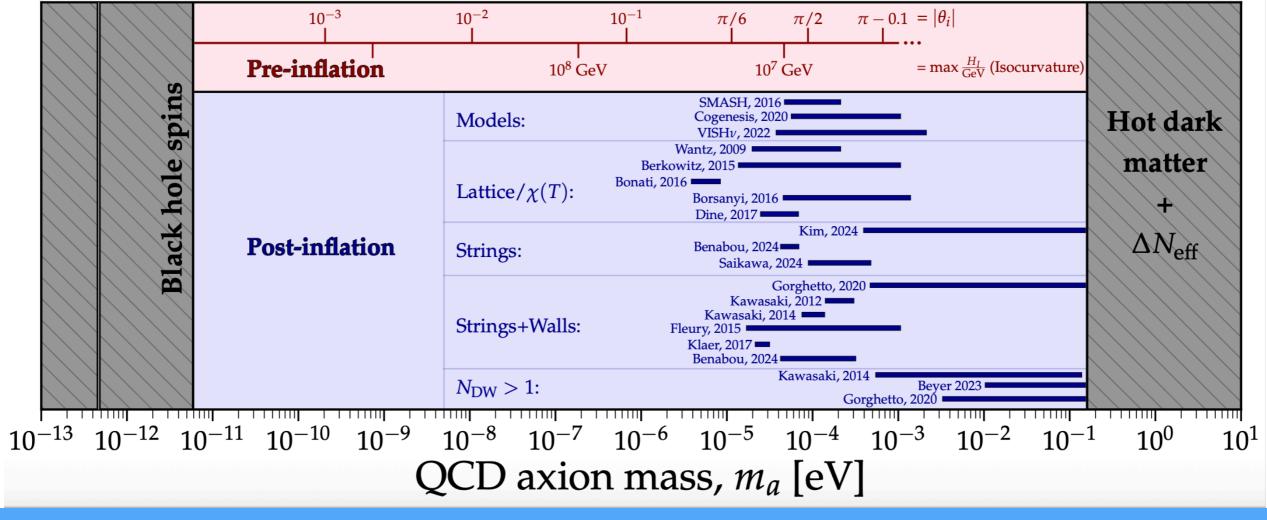
 θ_i arbitrary

misalignment contribution unique, but depends on initial conditions

$$\Omega_a h^2 \approx 0.12 \left(\frac{6\,\mu\text{eV}}{m_a}\right)^{1.16} \theta_i^2$$

- ullet Unavoidably contributes to $\Omega_{
 m DM}$
 - i) misalignment mechanism (axion oscillations)
 - ii) topological defects (axion strings, ...)

[https://cajohare.github.io/AxionLimits]



• New spin-0 boson with a pseudo-shift symmetry $a \rightarrow a + \kappa f_a$

broken by
$$rac{a}{f_a} rac{g_s^2}{32\pi^2} G ilde{G}$$
 $E(0) \leq E(\langle a
angle)$ [Vafa, Witten PRL 53 (1984)]

• New spin-0 boson with a pseudo-shift symmetry $a \rightarrow a + \kappa f_a$

broken by
$$\frac{a}{f_a} \frac{g_s^2}{32\pi^2} G \tilde{G}$$
 $E(0) \leq E(\langle a \rangle)$ [Vafa, Witten PRL 53 (1984)]

$$\theta_{\rm eff} = \frac{\langle a \rangle}{f_a}$$

$$e^{-V_4 E(\theta_{\text{eff}})} = \int \mathcal{D}\varphi \, e^{-S_0 + i\theta_{\text{eff}} \int G\tilde{G}}$$

$$= \left| \int \mathcal{D}\varphi \, e^{-S_0 + i\theta_{\text{eff}} \int G\tilde{G}} \right|$$

$$\leq \int \mathcal{D}\varphi \, \left| e^{-S_0 + i\theta_{\text{eff}} \int G\tilde{G}} \right| = e^{-V_4 E(0)}$$

^{*}path-integral measure positive definite for a vector-like theory (e.g. QCD)

• New spin-0 boson with a pseudo-shift symmetry $a \rightarrow a + \kappa f_a$

broken by
$$\frac{a}{f_a} \frac{g_s^2}{32\pi^2} G \tilde{G}$$
 $E(0) \leq E(\langle a \rangle)$ [Vafa, Witten PRL 53 (1984)]

$$\theta_{\text{eff}} = \frac{\langle a \rangle}{f_a}$$

$$e^{-V_4 E(\theta_{\text{eff}})} = \int \mathcal{D}\varphi \, e^{-S_0 + i\theta_{\text{eff}} \int G\tilde{G}}$$

$$= \left| \int \mathcal{D}\varphi \, e^{-S_0 + i\theta_{\text{eff}} \int G\tilde{G}} \right|$$

$$\leq \int \mathcal{D}\varphi \, \left| e^{-S_0 + i\theta_{\text{eff}} \int G\tilde{G}} \right| = e^{-V_4 E(0)}$$

Does the axion really relax to zero?

$$\theta_{
m eff}=rac{\langle a
angle}{f_a}\sim G_F^2f_\pi^4j_{
m CKM}pprox 10^{-18}$$
 [Georgi, Randall, NPB276 (1986)]

• New spin-0 boson with a pseudo-shift symmetry $a \rightarrow a + \kappa f_a$

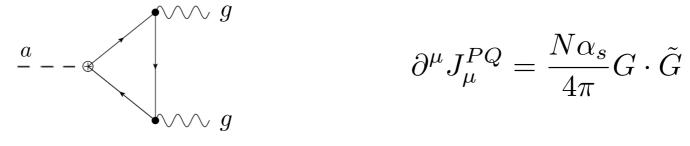
broken by
$$\frac{a}{f_a} \frac{g_s^2}{32\pi^2} G\tilde{G}$$
 $E(0) \leq E(\langle a \rangle)$ [Vafa, Witten PRL 53 (1984)]

$$E(0) \le E(\langle a \rangle)$$

• its origin can be traced back to a global U(1)_{PQ}

[Peccei, Quinn '77, Weinberg '78, Wilczek '78]

- 1. spontaneously broken (the axion is the associated pNGB)
- 2. QCD anomalous



$$\partial^{\mu} J_{\mu}^{PQ} = \frac{N\alpha_s}{4\pi} G \cdot \tilde{G}$$

ullet Consequences of $rac{a}{f_a}rac{g_s^2}{32\pi^2}G ilde{G}$

Axion mass

$$-\frac{a}{r}$$
 (QCD) $-\frac{a}{r}$ $\sim \frac{\Lambda_{\rm QCD}^4}{f_a^2}$ $m_a \sim \Lambda_{\rm QCD}^2/f_a$

• Consequences of $\frac{a}{f_a} \frac{g_s^2}{32\pi^2} G\tilde{G}$

Axion mass

$$-\frac{a}{r}$$
 -QCD) $-\frac{a}{r}$ $\sim \frac{\Lambda_{\rm QCD}^4}{f_a^2}$

$$-\frac{a}{10^9} - \frac{10^9}{10^9} - \frac{10^9}{10^9} - \frac{10^9}{10^9} = \frac{10^9}{10^9}$$

[Gorghetto, Villadoro 1812.01008 (NNLO chiPT) Bonati et al, 1512.06746 + Borsanyi et al 1606.07494 (lattice)]

 $f_a \gtrsim 10^9 \, \text{GeV from astrophysics}$

very light & weakly coupled

• Consequences of $\frac{a}{f_a} \frac{g_s^2}{32\pi^2} G\tilde{G}$

Axion mass

$$-\frac{a}{r}$$
 - QCD $-\frac{a}{r}$ $\sim \frac{\Lambda_{\rm QCD}^4}{f_a^2}$

$$-\frac{a}{10^9} - \frac{10^9}{10^9} - \frac{10^9}{10^9} - \frac{10^9}{10^9} - \frac{10^9}{10^9} = \frac{10^9}{10^9}$$

[Gorghetto, Villadoro 1812.01008 (NNLO chiPT) Bonati et al, 1512.06746 + Borsanyi et al 1606.07494 (lattice)]

 $f_a \gtrsim 10^9 \, \text{GeV from astrophysics}$

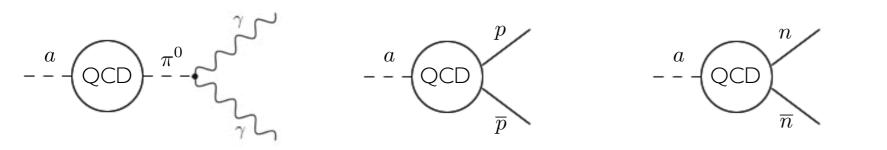
very light & weakly coupled

- experimentally, more useful to think about the axion as wave

$$\lambda_a = \frac{h}{m_a c} \sim 20 \text{ cm } \frac{\mu \text{eV}}{m_a}$$

• Consequences of $\frac{a}{f_a} \frac{g_s^2}{32\pi^2} G\tilde{G}$

Axion couplings to photons, nucleons, electrons, ...



$$-\stackrel{a}{-} - \bigcirc QCD \qquad \overline{p}$$

$$-\stackrel{a}{-} - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \overbrace{\overline{n}}^{n}$$

$$-\frac{a}{-} - \left(QCD \right) - \frac{\pi^0}{-} - \left(\frac{e}{\overline{e}} \right)$$

$$C_{\gamma} = -1.92(4)$$

$$C_p = -0.47(3)$$

$$C_n = -0.02(3)$$

$$C_p = -0.47(3)$$
 $C_n = -0.02(3)$ $C_e = -7.8(2) \times 10^{-6} \log\left(\frac{f_a}{m_e}\right)$

$$\mathcal{L}_a \supset \frac{\alpha}{8\pi} \frac{C_{\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{C_f}{2f_a} \partial_{\mu} a \overline{f} \gamma^{\mu} \gamma_5 f \qquad (f = p, n, e)$$

[Grilli di Cortona, Hardy, Vega, Villadoro 1511.02867 (NLO chiPT) Lu, Du, Guo, Meißner, Vonk 2003.01625 (NNLO chiPT)]

ullet Consequences of $rac{a}{f_a}rac{g_s^2}{32\pi^2}G ilde{G}$

Axion couplings to photons, nucleons, electrons, ...

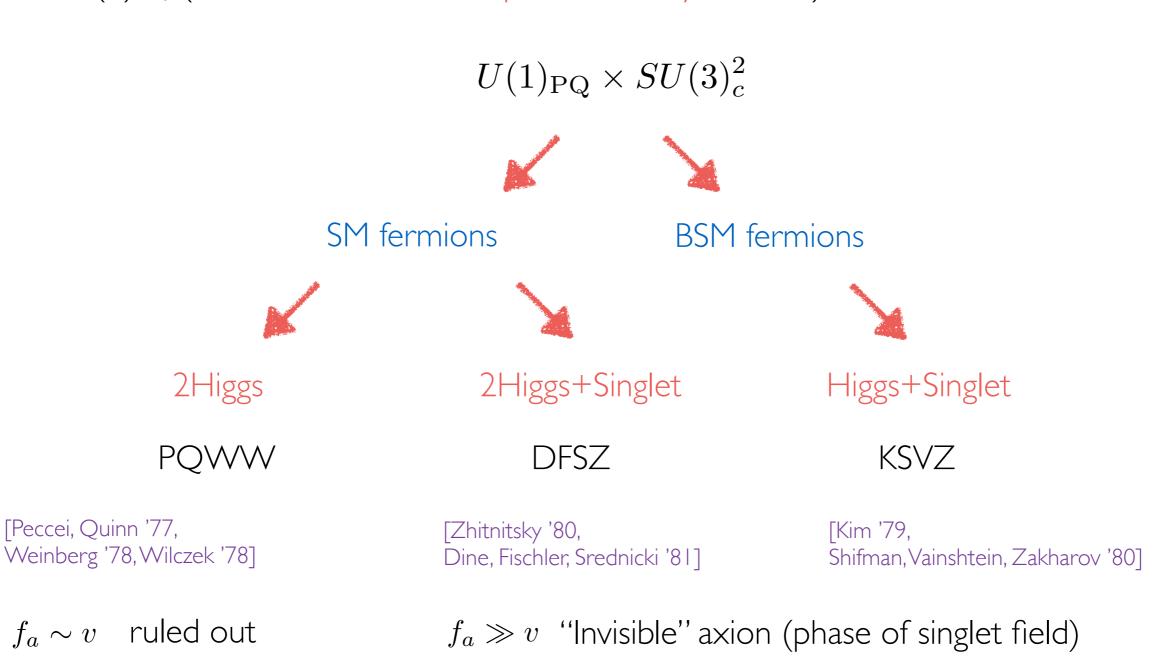
A motivated target for experiments, but UV completion can drastically affect low-energy axion properties

$$C_{\gamma} = -1.92(4)$$
 $C_{p} = -0.47(3)$ $C_{n} = -0.02(3)$ $C_{e} = -7.8(2) \times 10^{-6} \log \left(\frac{f_{a}}{m_{e}}\right)$

$$\mathcal{L}_a \supset \frac{\alpha}{8\pi} \frac{C_{\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{C_f}{2f_a} \partial_{\mu} a \overline{f} \gamma^{\mu} \gamma_5 f \qquad (f = p, n, e)$$

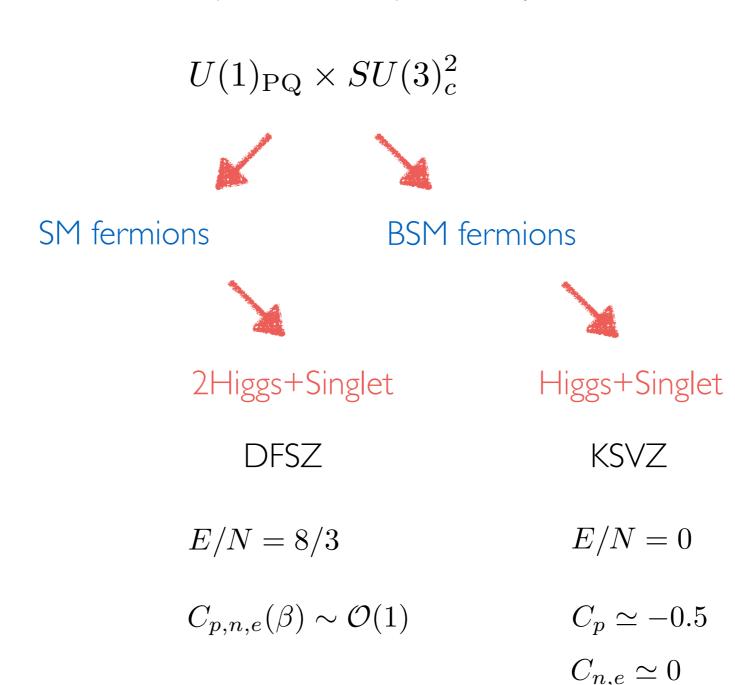
Benchmark axion models

global U(I)_{PQ} (QCD anomalous + spontaneously broken)



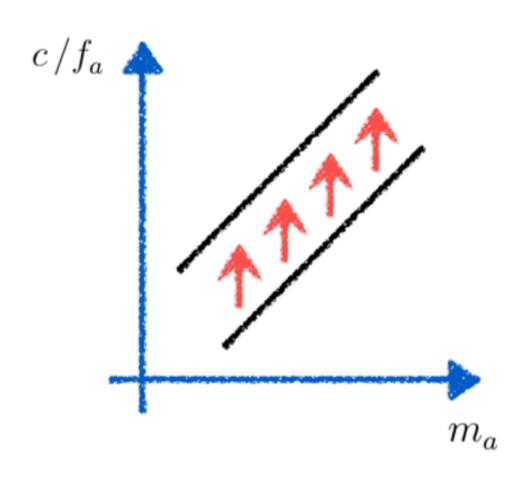
Benchmark axion models

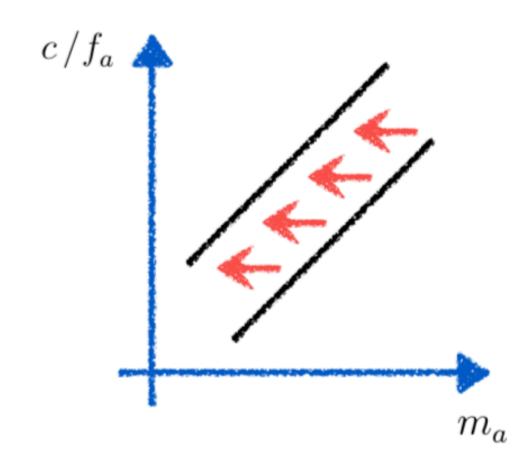
global U(I)_{PQ} (QCD anomalous + spontaneously broken)



 $C_{\gamma} = E/N - 1.92(4)$

Axions beyond benchmarks





enhance Wilson coefficient for fixed m_a

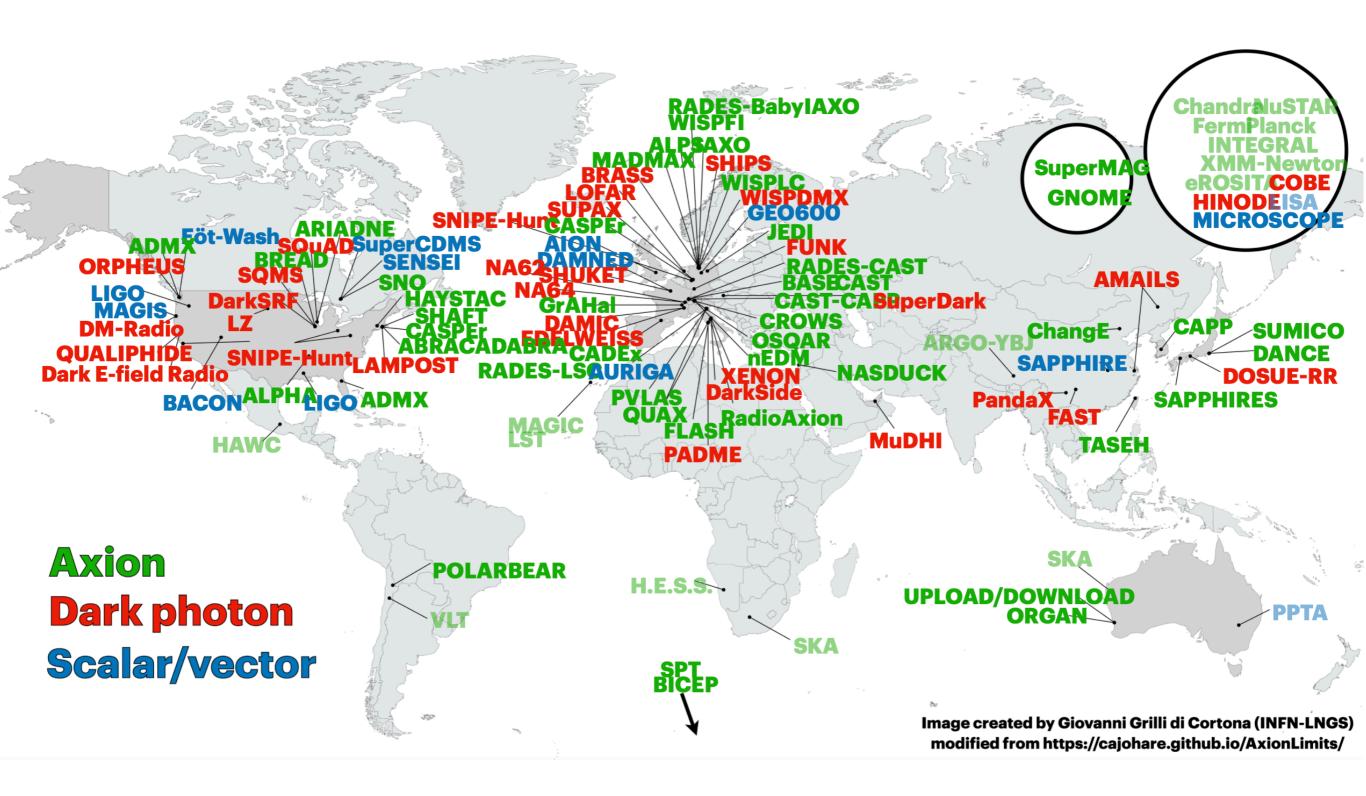
[LDL, Mescia, Nardi 1610.07593 + 1705.05370 Farina, Pappadopulo, Rompineve, Tesi 1611.09855 Agrawal, Fan, Reece, Wang 1709.06085 Darme', LDL, Giannotti, Nardi 2010.15846 Ringwald, Sokolov 2104.02574, ...]

suppress axion mass for fixed f_a

[Hook 1802.10093, LDL, Gavela, Quilez, Ringwald 2102.00012 + 2102.01082]

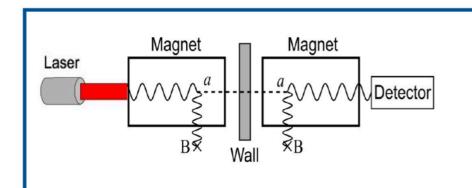
QCD axion parameter space <u>much larger</u> than what traditionally thought

Experimental landscape



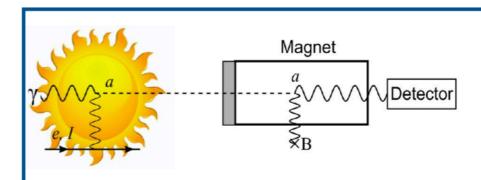
Axion detection

Ways to look for axions



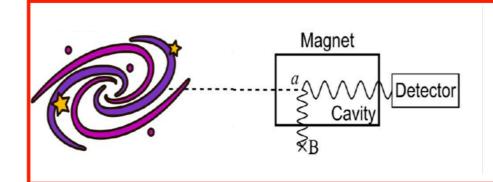
Light-Shining-Through-Wall Experiment

Laboratory-based experiments producing and detecting axions



<u>Helioscope</u>

Scientific instrument designed to detect axions or axion-like particles (ALPs) coming from the Sun



<u>Haloscope</u>

Scientific instrument designed to detect axions in the Milky Way halo

Axion detection

• Classification by couplings vs. production mechanism

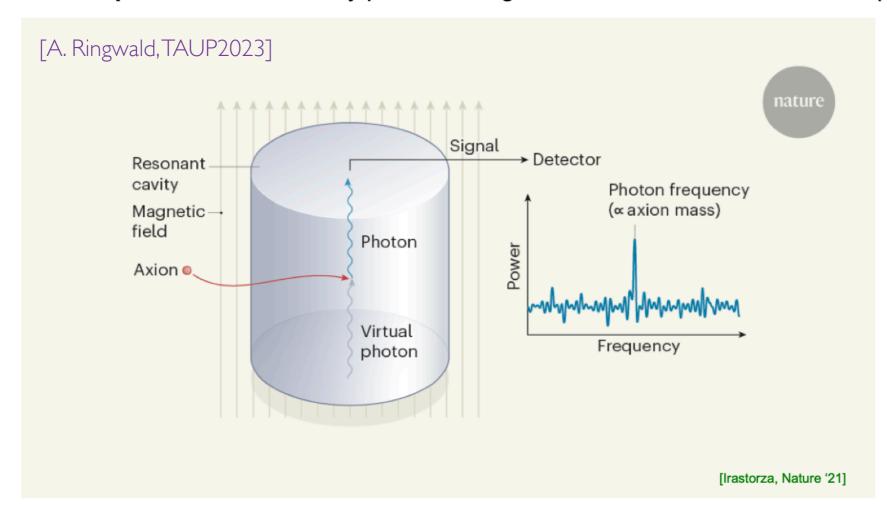
	LAB	HELIO	HALO
- photons	×	×	×
- electrons		X	×
- nucleons			X
- EDMs			×
- CP-violating	×		
- flavour-violating	×		

Axion-photon

• $\mathcal{L} \supset \frac{1}{4} g_{a\gamma} a F \tilde{F} = g_{a\gamma} a \mathbf{E} \cdot \mathbf{B}$

Haloscope principle: P. Sikivie, Phys. Rev. Lett., 51, 1415 (1983)

Concept: In microwave cavity placed in magnetic field, DM axion converts into photon



If axion mass matches resonance frequency of cavity,

$$m_a = 2\pi\nu_{\rm res} \sim 4\,\mu{\rm eV}\left(\frac{\nu_{\rm res}}{{\rm GHz}}\right)$$

power output

$$P_{\rm out} \sim g_{a\gamma}^2 \, \rho_{\rm a} \, B_0^2 \, V \, Q$$

enhanced by quality factor

$$Q \sim 10^5$$

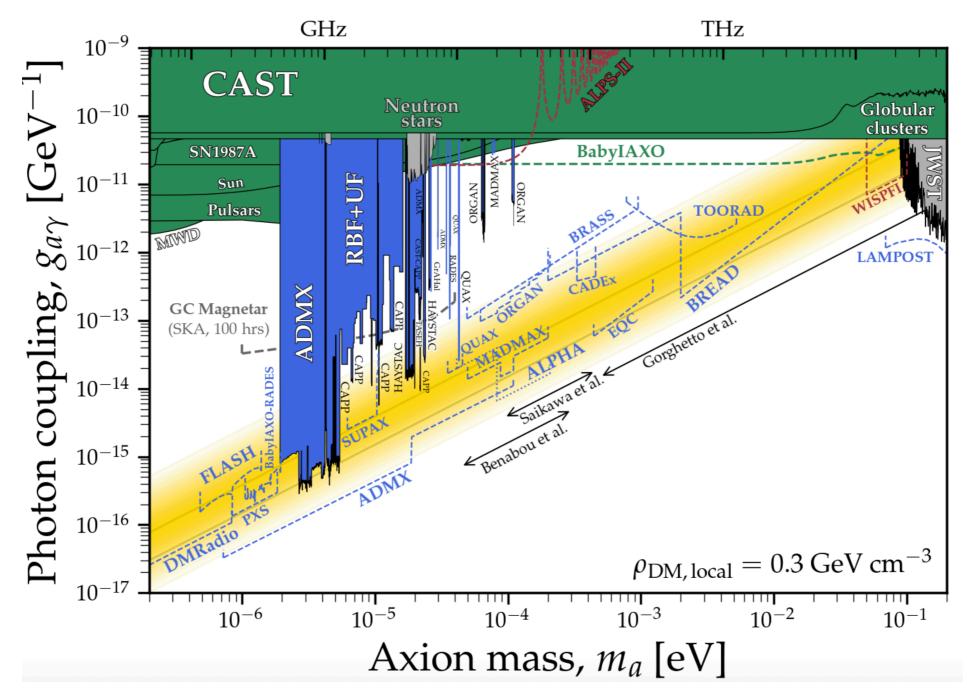
 Need to scan by tuning resonance frequency

Axion-photon

 $\bullet \ \mathcal{L} \supset \frac{1}{4} g_{a\gamma} \, aF \tilde{F}$

the QCD axion DM hypothesis will be largely tested in the next decades

[https://cajohare.github.io/AxionLimits]



Axion-electron

•
$$\mathcal{L} \supset g_{ae} \frac{\partial_{\mu} a}{2m_e} \overline{e} \gamma^{\mu} \gamma_5 e$$

$$H \supset -\frac{g_{ae}}{2m_e} \overrightarrow{\nabla} a \cdot \overrightarrow{\sigma} - \frac{g_{ae}}{2m_e^2} \dot{a} \overrightarrow{\sigma} \cdot \overrightarrow{P}$$

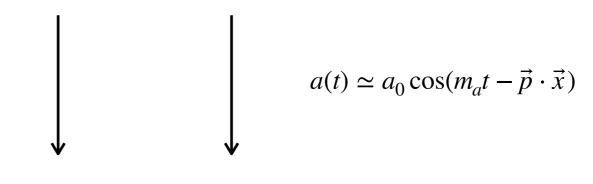
$$H \supset -\frac{g_{ae}}{2m_e} \overrightarrow{\nabla} a \cdot \overrightarrow{\sigma} - \frac{g_{ae}}{2m_e^2} \dot{a} \overrightarrow{\sigma} \cdot \overrightarrow{P}$$

Axion-electron

•
$$\mathcal{L} \supset g_{ae} \frac{\partial_{\mu} a}{2m_e} \overline{e} \gamma^{\mu} \gamma_5 e$$

$$H \supset -\frac{g_{ae}}{2m_e} \overrightarrow{\nabla} a \cdot \overrightarrow{\sigma} - \frac{g_{ae}}{2m_e^2} \dot{a} \overrightarrow{\sigma} \cdot \overrightarrow{P}$$

$$H \supset -\frac{g_{ae}}{2m_e} \overrightarrow{\nabla} a \cdot \vec{\sigma} - \frac{g_{ae}}{2m_e^2} \dot{a} \vec{\sigma} \cdot \overrightarrow{P}$$

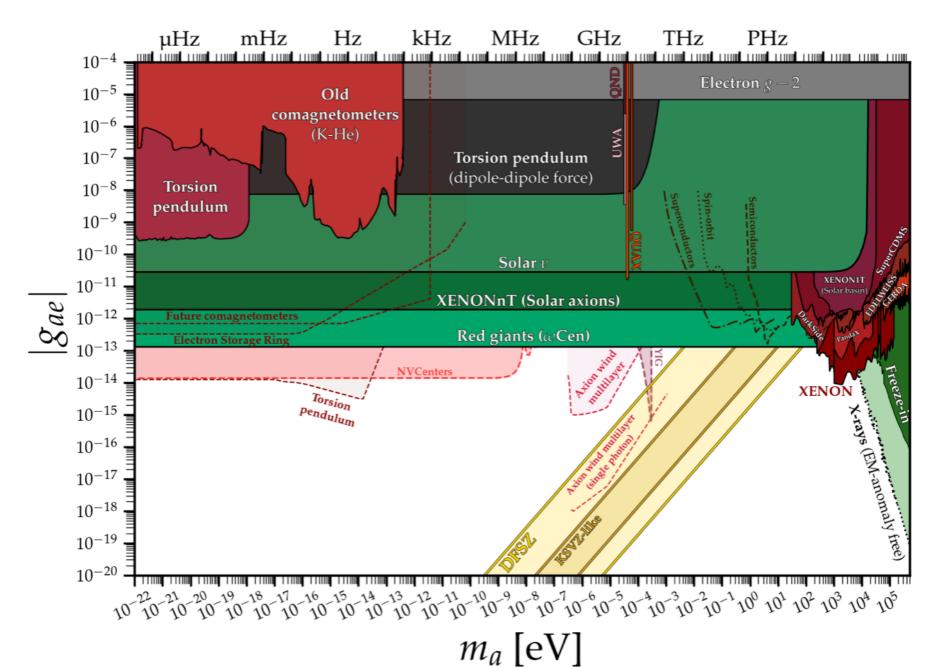


Axion-electron

$$\bullet \ \mathcal{L} \supset g_{ae} \frac{\partial_{\mu} a}{2m_e} \overline{e} \gamma^{\mu} \gamma_5 e$$

$$H \supset -\frac{g_{ae}}{2m_e} \overrightarrow{\nabla} a \cdot \vec{\sigma} - \frac{g_{ae}}{2m_e^2} \dot{a} \vec{\sigma} \cdot \overrightarrow{P}$$

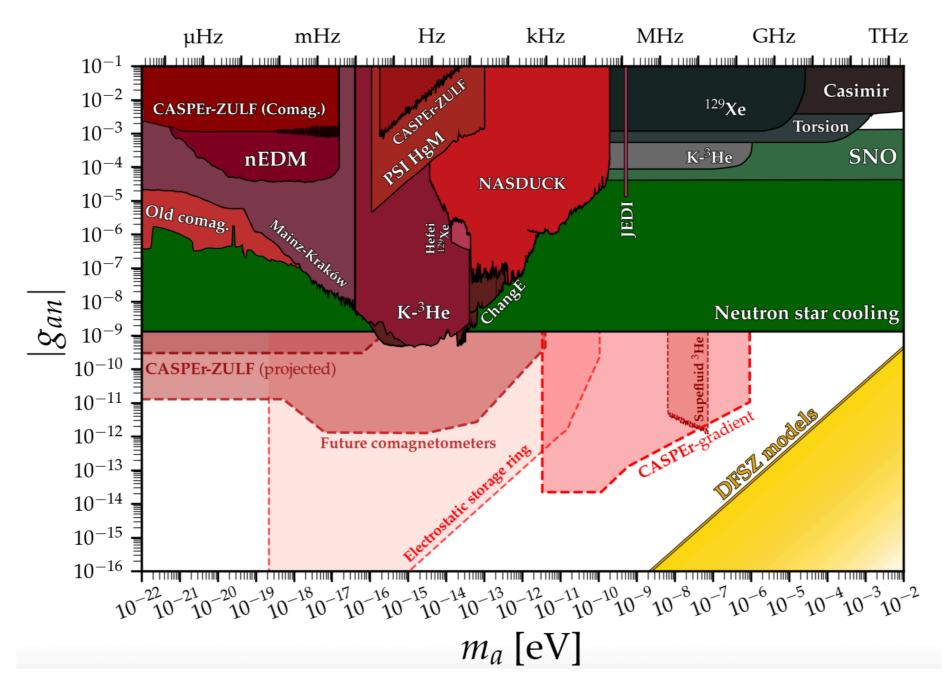
[https://cajohare.github.io/AxionLimits]



Axion-neutron

$$\bullet \ \mathcal{L} \supset g_{an} \frac{\partial_{\mu} a}{2m_e} \overline{n} \gamma^{\mu} \gamma_5 n$$

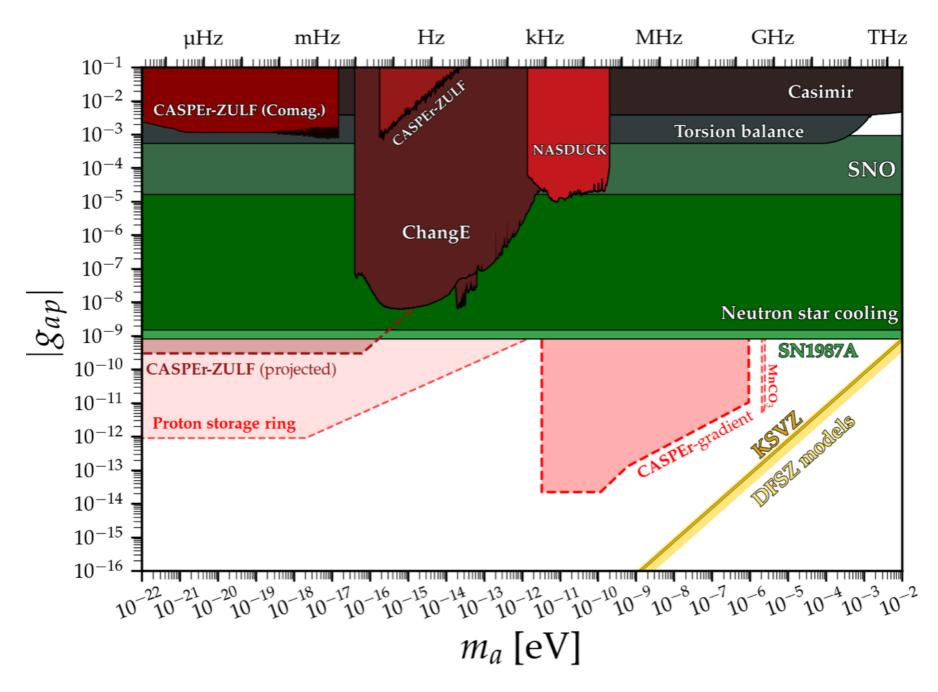
[https://cajohare.github.io/AxionLimits]



Axion-proton

$$\bullet \ \mathcal{L} \supset g_{ap} \frac{\partial_{\mu} a}{2m_e} \overline{p} \gamma^{\mu} \gamma_5 p$$

[https://cajohare.github.io/AxionLimits]



Axion-EDM

• CP-violating axion DM background induces an oscillating (nucleon) EDM

$$\mathcal{L} \supset \frac{g_s^2}{32\pi^2} \frac{a}{f_a} G\tilde{G} \qquad \qquad \mathcal{L} \supset -\frac{i}{2} g_{an\gamma} a \overline{n} \sigma_{\mu\nu} \gamma_5 n F^{\mu\nu}$$

Axion-EDM

CP-violating axion DM background induces an oscillating (nucleon) EDM

$$\mathcal{L} \supset \frac{g_s^2}{32\pi^2} \frac{a}{f_a} G \tilde{G} \qquad \mathcal{L} \supset -\frac{i}{2} g_{an\gamma} a \overline{n} \sigma_{\mu\nu} \gamma_5 n F^{\mu\nu}$$

$$a(t) \simeq \sqrt{\frac{2\rho_{\rm DM}}{m_a^2}} \cos(m_a t) \qquad \qquad d_n(t) = g_{an\gamma} \sqrt{\frac{2\rho_{\rm DM}}{m_a^2}} \cos(m_a t) \simeq 10^{-34} e \ cm \ \cos(m_a t)$$

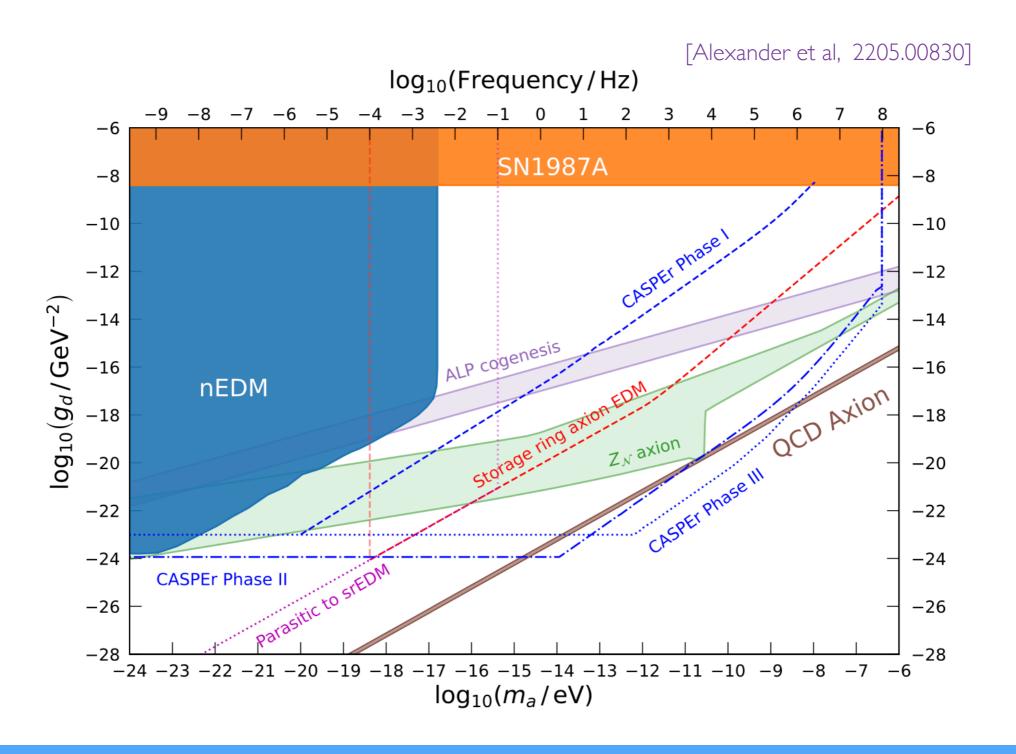
- NMR techniques (CASPEr-electric)
- [Graham, Rajendran Phys. Rev. D 88 (2013), Budker, Graham, Ledbetter, Rajendran, Sushkov, Phys. Rev. X 4 (2014)]

- proton storage rings

[Graham et al, Phys. Rev. D 103 (2021) Kim, Semertzidis, Phys. Rev. D 104 (2021)]

Axion-EDM

• CP-violating axion DM background induces an oscillating (nucleon) EDM



RadioAxion

ullet Time modulation of lpha-radioactivity from axion DM

[Broggini, Di Carlo, LDL, Toni 2404. 18993]

RadioAxion

ullet Time modulation of lpha-radioactivity from axion DM

[Broggini, Di Carlo, LDL, Toni 2404. I 8993]

$$\mathcal{L}_{\theta} = \frac{g_s^2 \theta}{32\pi^2} G\tilde{G}$$

 θ -dependence impacts nuclear physics (studied in the anthropic context)

[Ubaldi 0811.1599 Lee, Meißner, Olive, Shifman, Vonk 2006.12321]

$$\theta(t) \simeq \frac{\sqrt{2\rho_{\rm DM}}}{m_a f_a} \cos(m_a t)$$

time modulation of radioactive decays

[Tritium-decay previously considered in Zhang, Houston, Li 2303.09865]

$$I_{\rm exp}(t) \equiv (N(t) - \langle N \rangle)/\langle N \rangle$$

RadioAxion

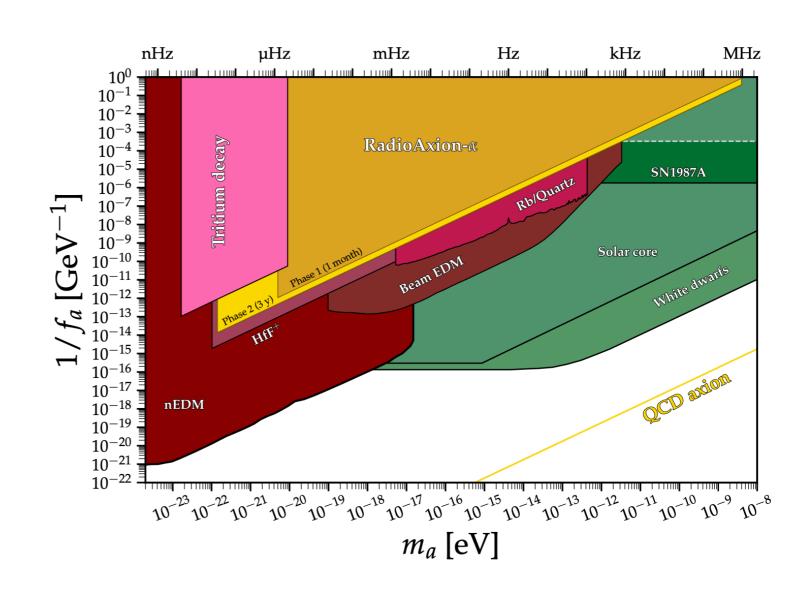
ullet Time modulation of lpha-radioactivity from axion DM

[Broggini, Di Carlo, LDL, Toni 2404. 18993]

we computed expected time modulation for α -decay [see backup slides]

we started data taking with an ²⁴¹Am source in the Gran Sasso Labs

$$\begin{split} I_{\rm exp}(t) &\equiv (N(t) - \langle N \rangle) / \langle N \rangle \\ &= -4.3 \times 10^{-6} \cos(2m_a t) \left(\frac{\rho_{\rm DM}}{0.45 \, {\rm GeV/cm}^3} \right) \\ &\times \left(\frac{10^{-16} \, {\rm eV}}{m_a} \right)^2 \left(\frac{10^8 \, {\rm GeV}}{f_a} \right)^2, \end{split}$$



[Beta decay and electron capture considered in Alda, Broggini, Di Carlo, LDL, Piatti, Rigolin, Toni 24 I 2.20930]

•
$$\mathcal{L} \supset g_{aN}^P a \overline{N} i \gamma_5 N + g_{aN}^S a \overline{N} N$$

$$g_{aN}^S \sim \frac{f_{\pi}}{f_a} \theta_{\text{eff}}$$

from UV sources of CP-violation or PQ breaking

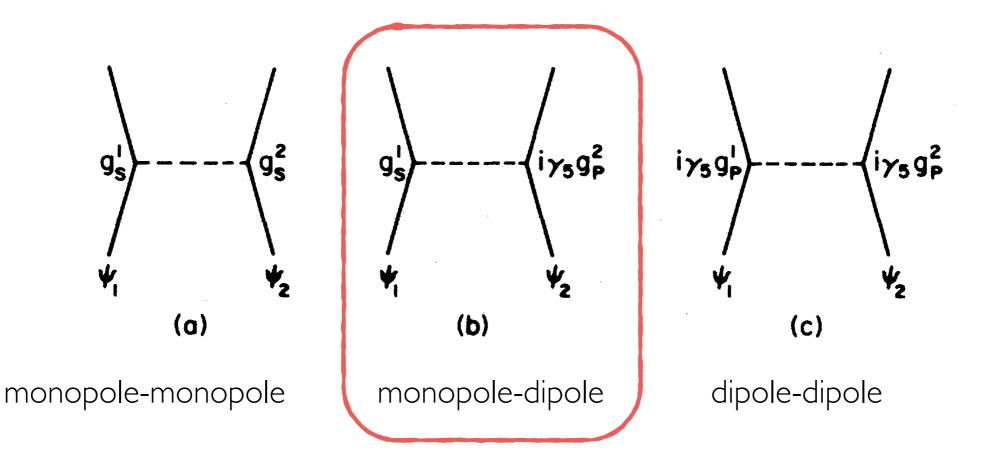
[Moody, Wilczek PRD 30 (1984) Barbieri, Romanino, Strumia hep-ph/9605368 Pospelov hep-ph/970743 I Bertolini, LDL, Nesti 2006.12508 Okawa, Pospelov, Ritz, 2111.08040 Dekens, de Vries, Shain, 2203.11230]

•
$$\mathcal{L} \supset g_{aN}^P a \overline{N} i \gamma_5 N + g_{aN}^S a \overline{N} N$$

$$g_{aN}^S \sim \frac{f_{\pi}}{f_a} \theta_{\text{eff}}$$

from UV sources of CP-violation or PQ breaking

New macroscopic forces from non-relativistic potentials [Moody, Wilczek PRD 30 (1984)]



double $heta_{
m eff}$ suppression

ARIADNE, QUAX-gpgs, ...

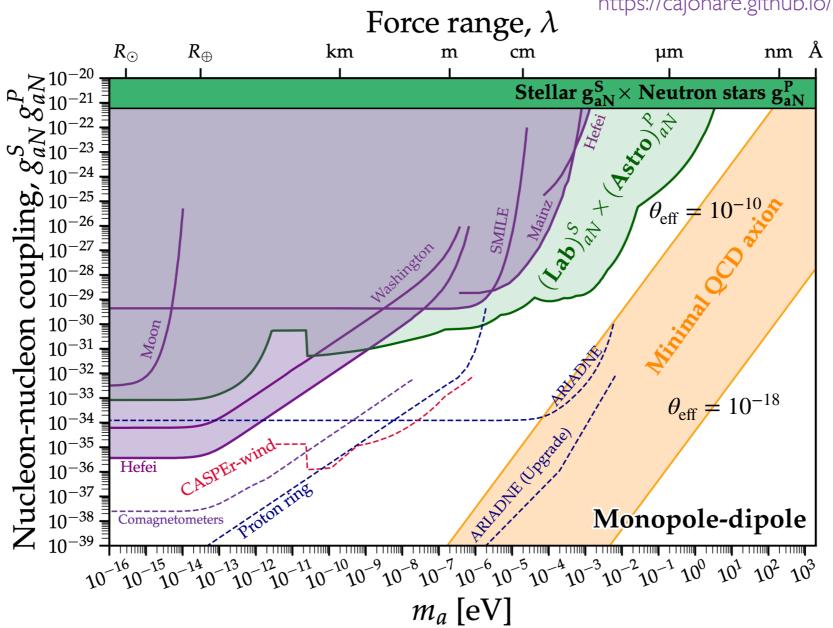
spin suppression + bkgd from ordinary magnetic forces

• $\mathcal{L} \supset g_{aN}^P a \overline{N} i \gamma_5 N + g_{aN}^S a \overline{N} N$

$$g_{aN}^S \sim \frac{f_{\pi}}{f_a} \theta_{\text{eff}}$$

from UV sources of CP-violation or PQ breaking

[O'Hare, Vitagliano 2010.03889 https://cajohare.github.io/AxionLimits]

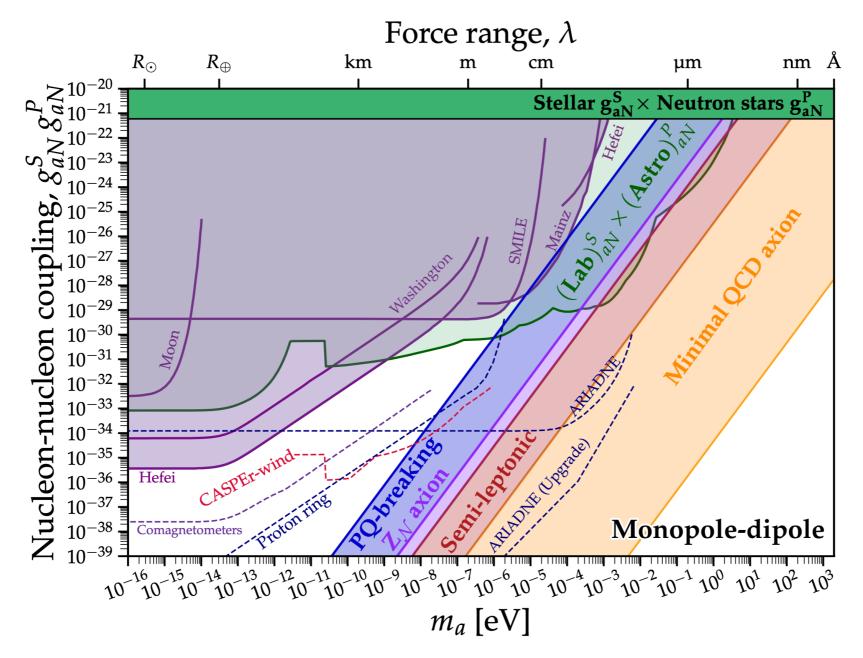


•
$$\mathcal{L} \supset g_{aN}^P a \overline{N} i \gamma_5 N + g_{aN}^S a \overline{N} N$$

$$g_{aN}^S \sim \frac{f_{\pi}}{f_a} \theta_{\text{eff}}$$

from UV sources of CP-violation or PQ breaking

[LDL, Gisbert, Nesti, Sørensen - 2407.15928]



$$\mathcal{L}_{a} \supset \frac{\partial_{\mu} a}{2f_{a}} \overline{\psi}_{i} \gamma^{\mu} (C_{ij}^{V} + C_{ij}^{A} \gamma_{5}) \psi_{j}$$

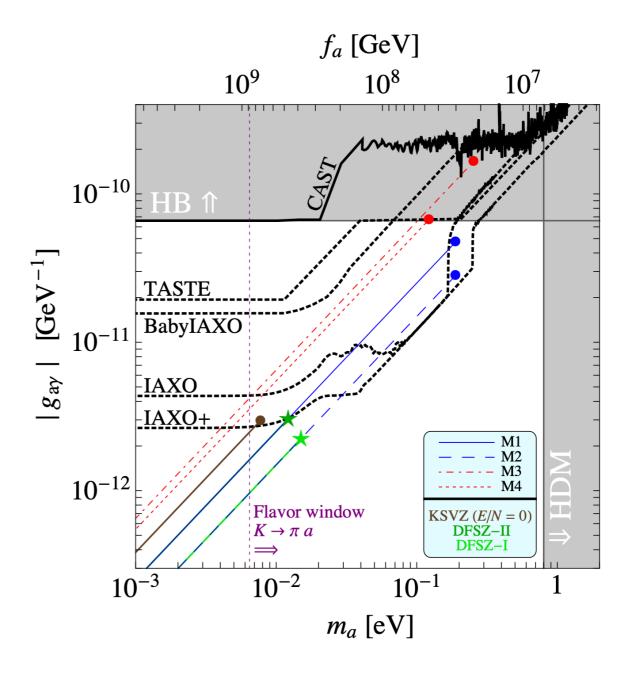
$$J_{PQ}^{\mu}$$

$$\mathcal{L}_a \supset \frac{\partial_{\mu} a}{2f_a} \overline{\psi}_i \gamma^{\mu} (C_{ij}^V + C_{ij}^A \gamma_5) \psi_j$$

$$J_{\mathrm{PQ}}^{\mu}$$

enhance/suppress $C_{p,n,e}$

["Astrophobic Axions" with non-universal PQ allow to relax SN1987A + WD/RGB bounds by ~ I order of magnitude LDL, Mescia, Nardi, Panci, Ziegler, 1712.04940 + 1907.06575]



$$\mathcal{L}_a \supset \frac{\partial_{\mu} a}{2f_a} \overline{\psi}_i \gamma^{\mu} (C_{ij}^V + C_{ij}^A \gamma_5) \psi_j$$

$$J_{\mathrm{PQ}}^{\mu}$$

enhance/suppress C_{p,n,e}

flavour-violating axion coupling

 $C^{V,A}_{i\neq j} \propto (V_\psi^\dagger \mathsf{PQ}_\psi V_\psi)_{i\neq j} \neq 0 \ \text{ if } \ \mathsf{PQ}_\psi \text{ non-universal}$

PQ as a flavour symmetry?

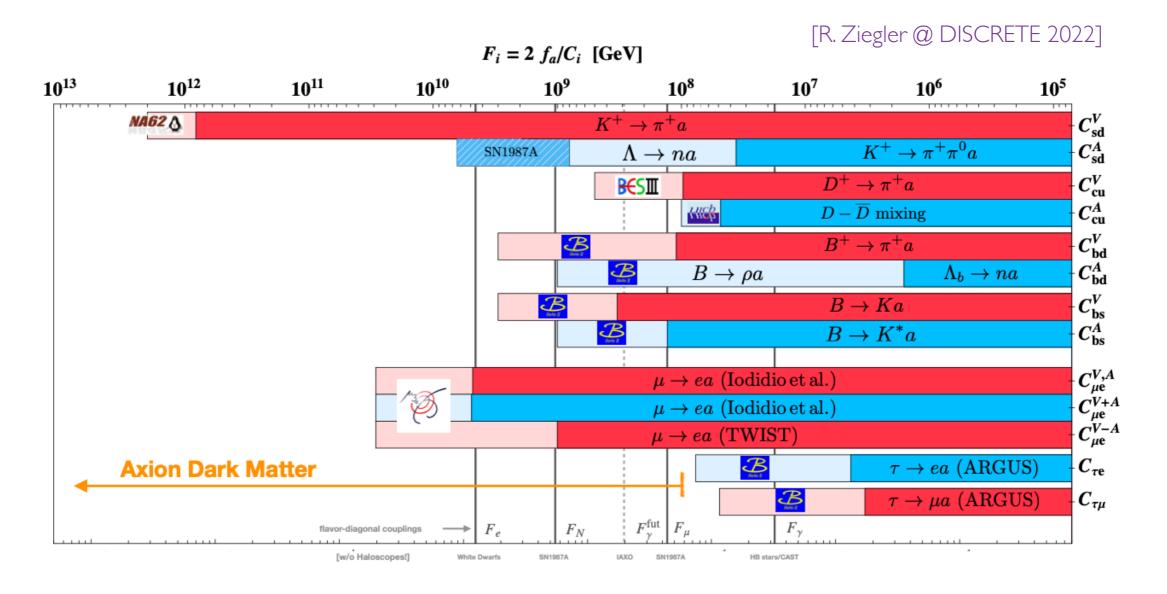
[Davidson, Wali PRL 48 (1982) Wilczek PRL 49 (1982)

. . .

Ema, Hamaguchi, Moroi, Nakayama 1612.05492 Calibbi, Goertz, Redigolo, Ziegler, Zupan 1612.08040 Björkeroth, LDL, Mescia, Nardi 1811.09637]

$$\mathcal{L}_a \supset \frac{\partial_{\mu} a}{2f_a} \overline{\psi}_i \gamma^{\mu} (C_{ij}^V + C_{ij}^A \gamma_5) \psi_j$$

 $C^{V,A}_{i \neq j} \propto (V_{\psi}^{\dagger} \mathrm{PQ}_{\psi} V_{\psi})_{i \neq j} \neq 0$ if PQ_{ψ} non-universal



for $C_i = \{C_{\gamma}, C_e, C_N, C_{sd}, C_{bs}, C_{bd}, C_{\mu e}\} = 1$ flavour beats astrophysics!

Conclusions

- The QCD axion provides a guide for where to search
- World-wide experimental effort, employing complementary techniques and couplings

Backup slides

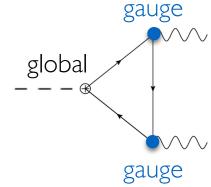
Enhancing $g_{a\gamma}$

$$g_{a\gamma} = \frac{\alpha}{2\pi} \frac{C_{a\gamma}}{f_a}$$

$$g_{a\gamma} = \frac{\alpha}{2\pi} \frac{C_{a\gamma}}{f_a} \qquad C_{a\gamma} = E/N - 1.92(4)$$

R_Q	\mathcal{O}_{Qq}	$\Lambda_{\rm Landau}^{2-{ m loop}}[{ m GeV}]$	E/N
(3,1,-1/3)	$\overline{Q}_L d_R$	$9.3 \cdot 10^{38}(g_1)$	2/3
(3,1,2/3)	$\overline{Q}_L u_R$	$5.4 \cdot 10^{34} (g_1)$	8/3
(3,2,1/6)	$\overline{Q}_R q_L$	$6.5 \cdot 10^{39}(g_1)$	5/3
(3,2,-5/6)	$\overline{Q}_L d_R H^\dagger$	$4.3 \cdot 10^{27} (g_1)$	17/3
(3,2,7/6)	$\overline{Q}_L u_R H$	$5.6 \cdot 10^{22} (g_1)$	29/3
(3,3,-1/3)	$\overline{Q}_R q_L H^\dagger$	$5.1 \cdot 10^{30} (g_2)$	14/3
(3,3,2/3)	$\overline{Q}_R q_L H$	$6.6 \cdot 10^{27} (g_2)$	20/3
(3,3,-4/3)	$\overline{Q}_L d_R H^{\dagger 2}$	$3.5 \cdot 10^{18} (g_1)$	44/3
$(\overline{6}, 1, -1/3)$	$\overline{Q}_L \sigma_{\mu\nu} d_R G^{\mu\nu}$	$2.3 \cdot 10^{37}(g_1)$	1/15
(0,1,1)	$QL^{O}\mu\nu\alpha RO$	$2.0 ext{ 10 } ext{ } ext{(}g_1 ext{)}$	4/15
$(\overline{6}, 1, 2/3)$	$\overline{Q}_L \sigma_{\mu\nu} u_R G^{\mu\nu}$	$5.1 \cdot 10^{30} (g_1)$	$\frac{4/15}{16/15}$
$(\overline{6}, 1, 2/3)$	$\overline{Q}_L \sigma_{\mu\nu} u_R G^{\mu\nu}$	$5.1 \cdot 10^{30} (g_1)$	16/15
$(\overline{6}, 1, 2/3)$ $(\overline{6}, 2, 1/6)$	$\overline{Q}_L \sigma_{\mu\nu} u_R G^{\mu\nu}$ $\overline{Q}_R \sigma_{\mu\nu} q_L G^{\mu\nu}$	$5.1 \cdot 10^{30} (g_1)$ $7.3 \cdot 10^{38} (g_1)$	16/15 2/3
$(\overline{6}, 1, 2/3)$ $(\overline{6}, 2, 1/6)$ $(8, 1, -1)$	$ \overline{Q}_L \sigma_{\mu\nu} u_R G^{\mu\nu} \overline{Q}_R \sigma_{\mu\nu} q_L G^{\mu\nu} \overline{Q}_L \sigma_{\mu\nu} e_R G^{\mu\nu} $	$5.1 \cdot 10^{30}(g_1)$ $7.3 \cdot 10^{38}(g_1)$ $7.6 \cdot 10^{22}(g_1)$	16/15 2/3 8/3

$$\partial^{\mu} J_{\mu}^{PQ} = \frac{N\alpha_s}{4\pi} G \cdot \tilde{G} + \frac{E\alpha}{4\pi} F \cdot \tilde{F}$$



- Pheno preferred <u>hadronic axions</u>
 - 1. Q-fermions short lived (no coloured relics)
 - 2. No Landau poles below Planck

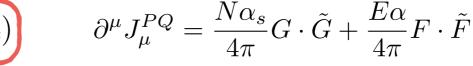
$$E/N \in [5/3, 44/3]$$

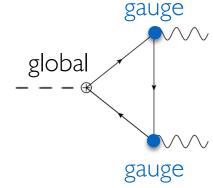
[LDL, Mescia, Nardi 1610.07593]

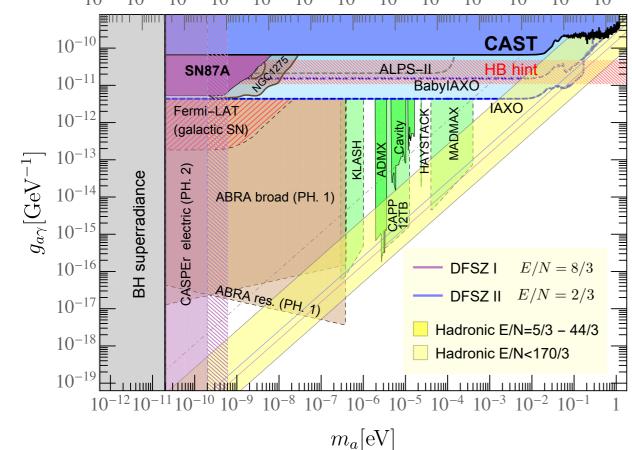
Enhancing $g_{a\gamma}$

$$g_{a\gamma} = \frac{\alpha}{2\pi} \frac{C_{a\gamma}}{f_a}$$

$$C_{a\gamma} = E/N - 1.92(4)$$







- Pheno preferred <u>hadronic axions</u>
 - 1. Q-fermions short lived (no coloured relics)
 - 2. No Landau poles below Planck

$$E/N \in [5/3, 44/3]$$

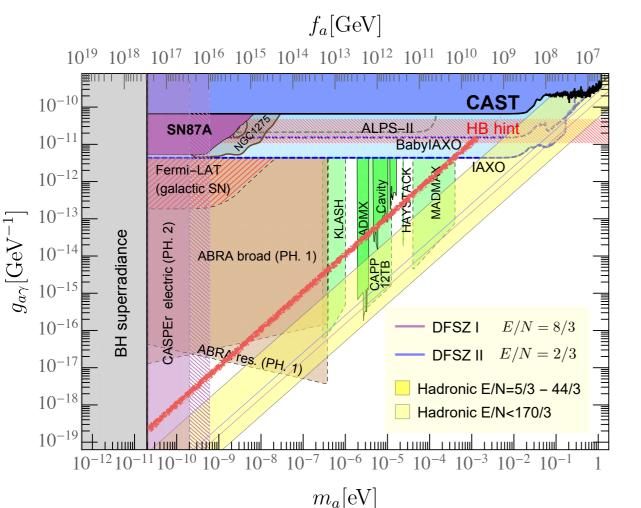
[LDL, Mescia, Nardi 1610.07593]

[LDL, Giannotti, Nardi, Visinelli 2003.01100]

Enhancing $g_{a\gamma}$

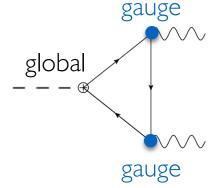
$$g_{a\gamma} = \frac{\alpha}{2\pi} \frac{C_{a\gamma}}{f_a}$$

$$C_{a\gamma} = E/N - 1.92(4)$$



[LDL, Giannotti, Nardi, Visinelli 2003.01100]

$$\partial^{\mu} J_{\mu}^{PQ} = \frac{N\alpha_s}{4\pi} G \cdot \tilde{G} + \frac{E\alpha}{4\pi} F \cdot \tilde{F}$$



- Pheno preferred <u>hadronic axions</u>
 - 1. Q-fermions short lived (no coloured relics)
 - 2. No Landau poles below Planck
- More Q's?
 [LDL, Mescia, Nardi 1705.05370 Plakkot, Hoof 2107.12378]

$$E/N < 170/3$$
 (perturbativity)

- Going above E/N = 170/3?
 - boost global charge (clockwork)

 [Farina, Pappadopulo, Rompineve, Tesi 1611.09855
 Darme', LDL, Giannotti, Nardi 2010.15846]
 - be agnostic, E/N is a free parameter

CPV beyond CKM

• Axion potential in the presence of \mathcal{O}_{CPV}

e.g.
$$\mathcal{O}_{\text{CPV}} = \frac{1}{\Lambda_{\text{CPV}}^2} (\bar{q}q)(\bar{q}i\gamma_5 q)$$

$$V(a) \simeq \frac{1}{2}K\left(\frac{a}{f_a}\right)^2 + K'\left(\frac{a}{f_a}\right)$$

$$K = \langle G\tilde{G}, G\tilde{G} \rangle \sim \Lambda_{\rm QCD}^4$$

$$-\frac{a}{-}$$
 $\left(QCD\right)$ $-\frac{a}{-}$

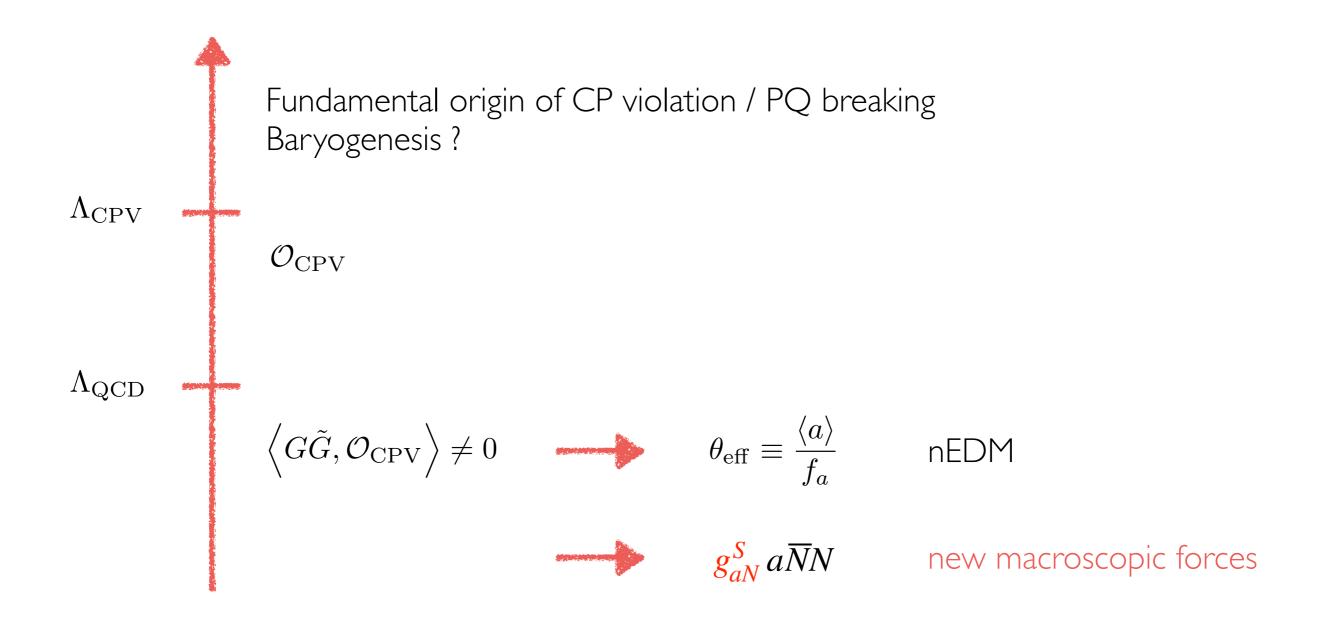
$$K' = \langle G\tilde{G}, \mathcal{O}_{\mathrm{CPV}} \rangle \sim \frac{\Lambda_{\mathrm{QCD}}^6}{\Lambda_{\mathrm{CPV}}^2}$$

$$\theta_{\rm eff} \equiv \frac{\langle a \rangle}{f_a} \simeq -\frac{K}{K'} \sim \frac{\Lambda_{\rm QCD}^2}{\Lambda_{\rm CPV}^2} = 10^{-10} \left(\frac{100 \, {\rm TeV}}{\Lambda_{\rm CPV}}\right)^2$$

CPV beyond CKM

ullet Axion potential in the presence of $\mathcal{O}_{\mathrm{CPV}}$

e.g.
$$\mathcal{O}_{\mathrm{CPV}} = \frac{1}{\Lambda_{\mathrm{CPV}}^2} (\bar{q}q)(\bar{q}i\gamma_5 q)$$



heta-dependence of lpha-decay

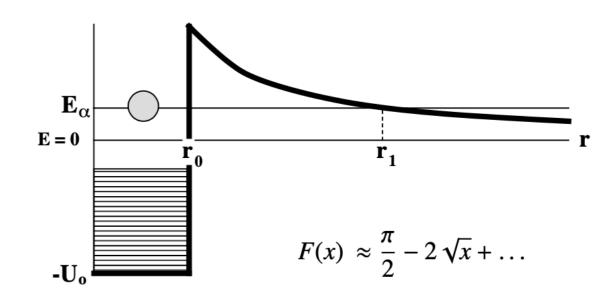
ullet Gamow theory of lpha-decay

[Broggini, Di Carlo, LDL, Toni 2404. I 8993]

$$T_{1/2} = \frac{\ln 2}{\nu_0} \exp(K)$$

$$K = 2 \int_{r_1}^{r_2} dr \sqrt{2\mu [V_{\text{tot}}(r) - Q_{\alpha}]}$$

$$= Z_{\alpha} Z_{d} \alpha_{\text{QED}} \left(\frac{8\mu}{Q_{\alpha}} \right)^{1/2} F \left(\frac{Q_{\alpha} R_{\text{well}}}{Z_{\alpha} Z_{d} \alpha_{\text{QED}}} \right)$$



- half-life is highly sensitive to Q-value

$$Q_{\alpha} = BE(A - 4, Z - 2) + BE(4, 2) - BE(A, Z)$$

- heta-term changes the size of the scalar (attractive) and vector (repulsive) nuclear interaction

$$H = G_S(\bar{N}N)(\bar{N}N) + G_V(\bar{N}\gamma_\mu N)(\bar{N}\gamma^\mu N)$$

$$\eta_S = \frac{G_S(\theta)}{G_S(\theta=0)}, \quad \eta_V = \frac{G_V(\theta)}{G_V(\theta=0)}$$

$$Q_{\alpha}(\theta) = Q_{\alpha}(\theta = 0) - 97 \text{ MeV } (\eta_{S}(\theta) - 1)$$
$$\times ((A - 4)^{2/3} + 4^{2/3} - A^{2/3}).$$

[Damour, Donoghue 0712.2968]

heta-dependence of lpha-decay

ullet Gamow theory of lpha-decay

$$T_{1/2} = \frac{\ln 2}{\nu_0} \exp(K)$$
 $T_{1/2}(\theta) \approx T_{1/2}(0) + \mathring{T}_{1/2}(0)\theta^2$

$$I(t) = \frac{T_{1/2}^{-1}(\theta(t)) - \langle T_{1/2}^{-1} \rangle}{\langle T_{1/2}^{-1} \rangle} \qquad \theta(t) = \theta_0 \cos(m_a t),$$

$$\approx -\frac{1}{2} \frac{\mathring{T}_{1/2}(0)}{T_{1/2}(0)} \theta_0^2 \cos(2m_a t) \qquad \theta_0 = \frac{\sqrt{2\rho_{\rm DM}}}{m_a f_a}$$

$$= -4.3 \times 10^{-6} \cos(2m_a t) \left(\frac{\rho_{\rm DM}}{0.45 \,{\rm GeV/cm}^3}\right)$$

$$\times \left(\frac{10^{-16} \,{\rm eV}}{m_a}\right)^2 \left(\frac{10^8 \,{\rm GeV}}{f}\right)^2,$$

[Broggini, Di Carlo, LDL, Toni 2404. 18993]

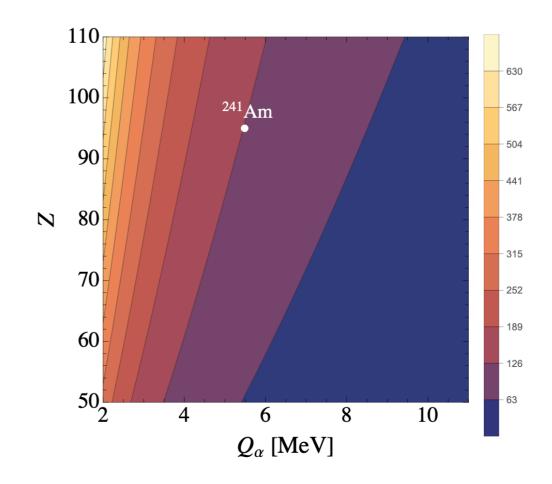


Figure A.3: Contours of $\mathring{T}_{1/2}(0)/T_{1/2}(0)$ in the (Q_{α}, Z) plane for A = 241. The case of 241 Am is indicated by a white dot.

