

Status and plans of EDMs. Proton storage ring EDM experiment at BNL.

Yannis K. Semertzidis

In-person presentation

MPP2025, Liverpool November 11-13, 2025

- EDM physics interest is growing and gaining more appreciation for its NP reach
- Studies of EDMs of various systems have been proposed and making progress
- First frozen spin storage ring EDM on the muon has been approved at PSI!
- New PhD work (Jonathan Lee, Stony Brook Univ.) on storage ring EDM, highsensitivity concept development, has cross-checked systematic errors mitigation plan using entirely independent tools.

U.S. Secretary of Energy, Chris Wright, visited Fermilab on July 17 (Photo: Brendan Casey)

• The very first poster he saw when he entered the Wilson Hall at Fermilab: Muon g–2, about an amazing experiment.

• 2021-2025 media coverage with 15.53 billion potential readers and 6,525 media stories!

Muon g-2 experiment at Fermilab

new physics. Muon g-2 (pronounced gee-minus-two) is an international collaboration of national labs and universities

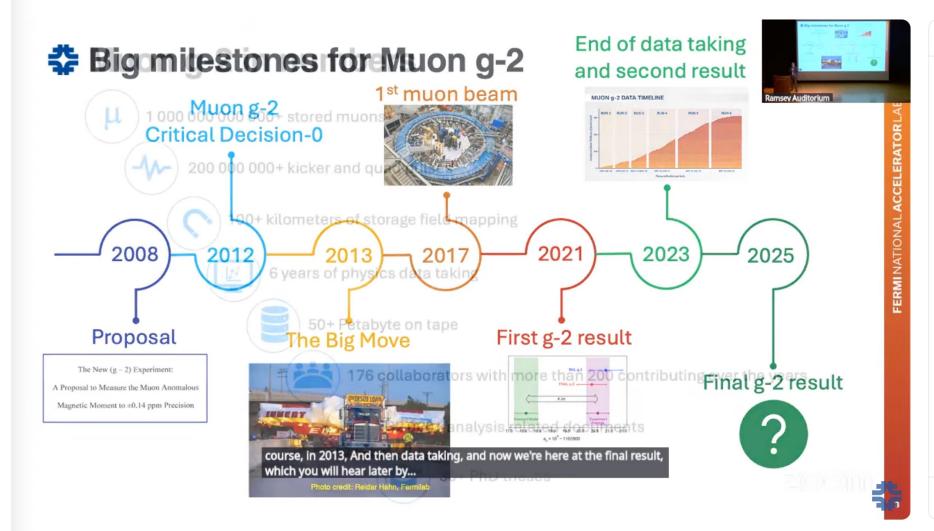
On June 3, 2025, scientists announced the most precise measurement of the magnetic anomaly of the muon. The final result combined the last three years of data with the first two results, yielding a precision of 127 parts-per-billion, surpassing the original experimental design goal of 140 parts-per-billion.

The third and final result is in perfect agreement with the experiment's previous results, further solidifying the experimental world average. This long-awaited value will be the world's most precise measurement of the muon magnetic anomaly for many years to come.

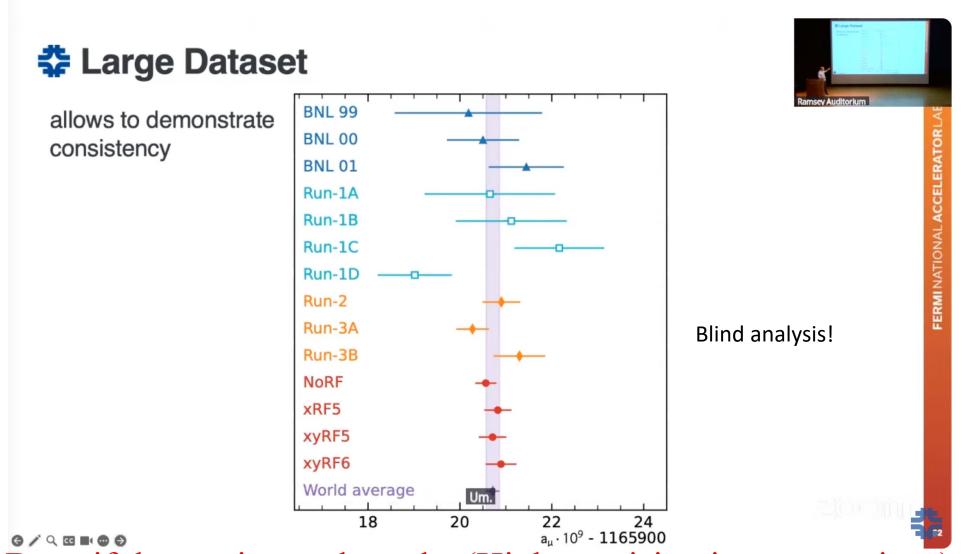
The Muon g-2 experiment at Fermilab has attracted worldwide news since 2021

- Stories on 6 continents and over 20 countries
- Media coverage includes the Associated Press, BBC News, Daily Mail, Japan News, National Geographic, NBC News, The New York Times, NPR, Popular Mechanics, Popular Science, Reuters, La Repubblica (Italy)

Social media in 2025:

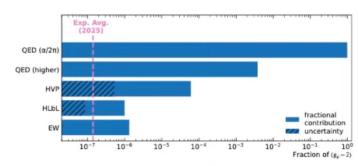

- · The final results video on YouTube has over 56k views since June 3
- Total social media impressions: 778.190
- Total social media engagement: 34,239
- · Total posts: 81

Social media influencer and STEM communicator, Ashley Christine, reported on the Muon g-2 result. She has over 350k followers, and her Muon g-2

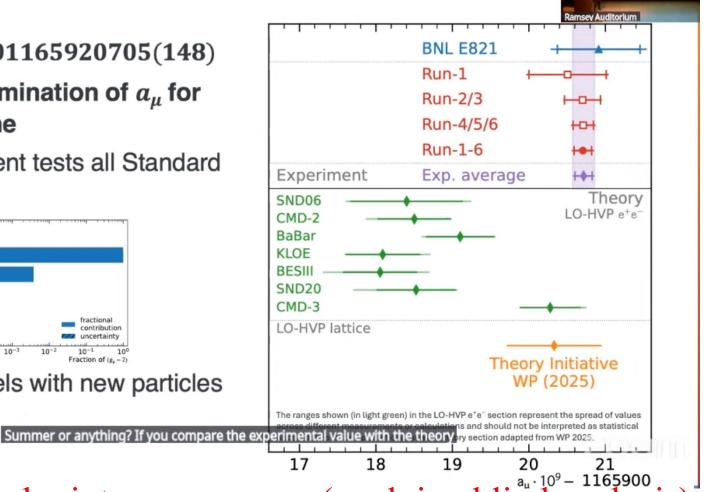


Slide by Peter Winter, co-spokesperson Fermilab, June 3

Announcement talk by Simon Corrodi, June 3

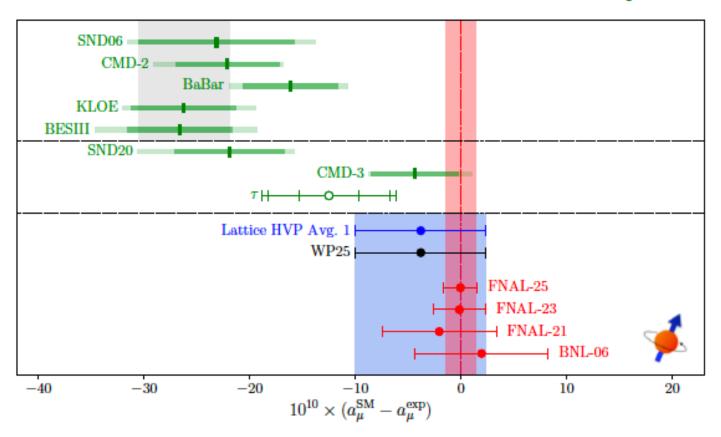

Beautiful experimental results (High-precision in storage rings)

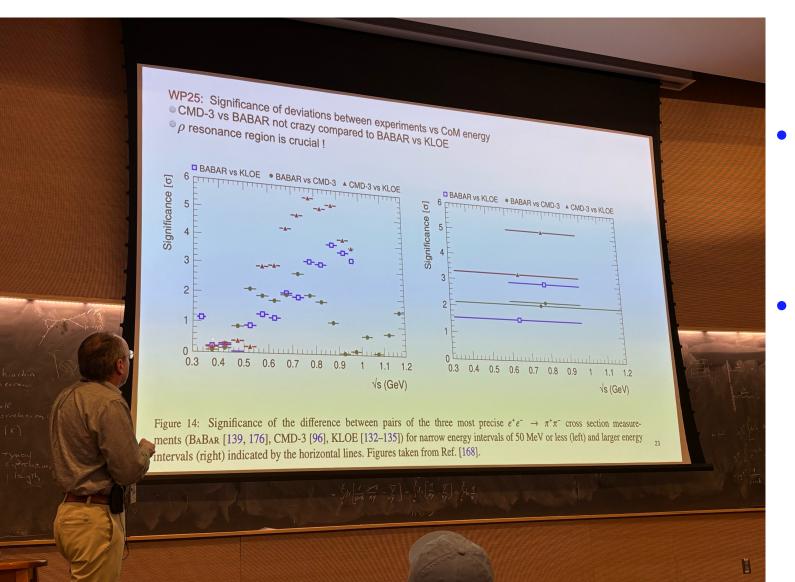
Slide by Simon Corrodi


Muon g–2 at Fermilab

$$a_{\mu}(\text{Run}-1-6) = 0.001165920705(148)$$

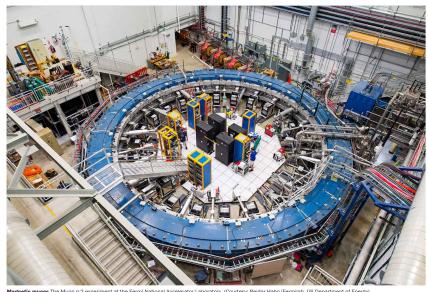
- Most precise determination of a_{μ} for many years to come
- 127 ppb measurement tests all Standard Model contributions


 benchmark for models with new particles or forces (BSM)


Theory results under intense progress (applying blind analysis)

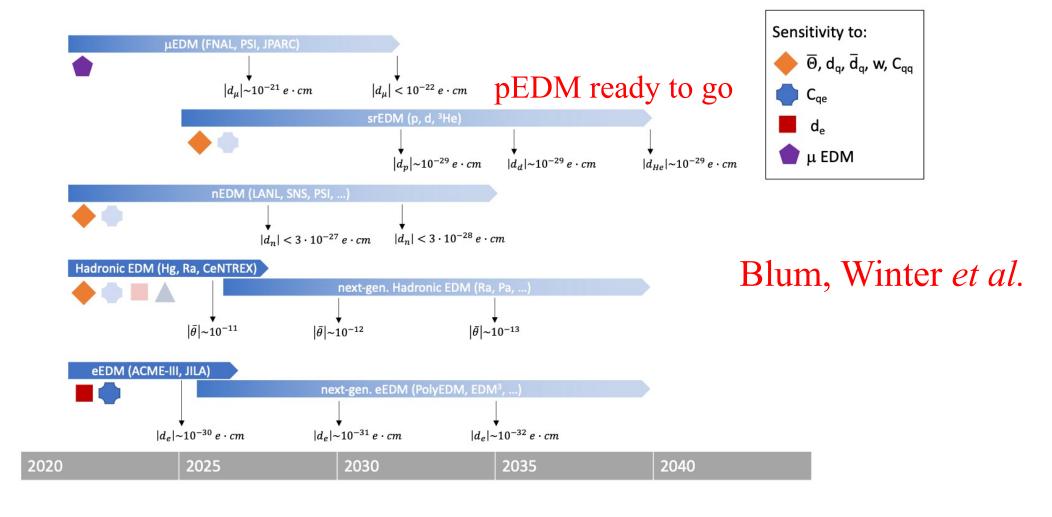
Status of theory and experiment of Muon g–2

[White Paper '25]


Peter Boyle, colloquium on the theory of muon g-2; BNL, July 22, 2025

- He predicted that lattice QCD will match the experimental error within five years!
- It may be possible to do better by a factor of ~2 in the experiment with mostly present equipment, significantly more with muon collider technology. It would be fun to design an upgrade!

Bill Morse, Lee Roberts 2023 Panofsky Prize


- We built the largest single diameter (15m) superconducting magnet coil at the time. Moved it across the country to repeat the experiment.
- Uniformity of B-field (1.5T) in cross-section to better than 10⁻⁶ measured it (absolute) to better than 10^{-7} calibrated with two independent methods
- Developed a trolley system measuring the B-field in situ (>5000 points)
- Introduced a new DC inflector with innovative B-field shield at 3T without being detectable at storage region <10 cm away
- Built a fast (200ns, 300G) magnet (kicker) without ferrite, measured the pulsed B-field eddy currents to 10⁻⁸ requiring enormous dynamic range
- Developed electrostatic quads with twice the CERN gradient; measured the Electric field gradient.
- Our calorimeter detectors had to have time stability, early to late in storage, of <20ps, measured it <2ps; gain stability to 10⁻⁴
- Used combinatorics to remove pileup pulses; segmented calo detectors
- Traceback system monitoring motion in real time, without affecting muons
- Used RF, riding on the quads, for 30μ s to adjust coherent beam motion and reduce muon losses, both by an order of magnitude
- Project manager (Chris Polly, Fermilab) received DOE management Prize! On time, on budget! We deliver!

Electric Dipole Moments

EDM timelines, from Snowmass 2021 (2022).

Figure 3-1. Timelines for the major current and planned EDM searches with their sensitivity to the important parameters of the effective field theory (see Fig. 3-2 for details). Solid (shaded) symbols indicate each experiment's primary (secondary) sensitivities. Measurement goals indicated by the black arrows are based on current plans of the various groups.

Snowmass paper on EDMs, why many EDMs:

Operator	Loop order	Mass reach
Electron EDM	1	$48 { m TeV} \sqrt{10^{-29} e { m cm}/d_e^{ m max}}$
	2	$2\mathrm{TeV}\sqrt{10^{-29}e\mathrm{cm}/d_e^\mathrm{max}}$
Up/down quark EDM	1	$130 { m TeV} \sqrt{10^{-29} e { m cm} / d_q^{ m max}}$
	2	$13\mathrm{TeV}\sqrt{10^{-29}e\mathrm{cm}/d_q^\mathrm{max}}$
Up-quark CEDM	1	$210\mathrm{TeV}\sqrt{10^{-29}\mathrm{cm}/ ilde{d}_u^\mathrm{max}}$
	2	$20\mathrm{TeV}\sqrt{10^{-29}\mathrm{cm}/ ilde{d}_u^\mathrm{max}}$
Down-quark CEDM	1	$290\mathrm{TeV}\sqrt{10^{-29}\mathrm{cm}/ ilde{d}_d^\mathrm{max}}$
	2	$28\mathrm{TeV}\sqrt{10^{-29}\mathrm{cm}/ ilde{d}_d^\mathrm{max}}$
Gluon CEDM	$2~(\propto m_t)$	$22 { m TeV} \sqrt[3]{10^{-29} { m cm}/(100 { m MeV})/ ilde{d}_G^{ m max}}$
	2	$260 { m TeV} \sqrt{10^{-29} { m cm}/(100 { m MeV})/ ilde{d}_G^{ m max}}$

TABLE I. Crude estimate of the mass reach of different operators. See text for explanation of the notation and assumptions used in deriving the estimates.

$$d_n = -(1.5 \pm 0.7) \cdot 10^{-3} \,\bar{\theta} \,e \,\text{fm}$$

$$-(0.20 \pm 0.01)d_u + (0.78 \pm 0.03)d_d + (0.0027 \pm 0.016)d_s$$

$$-(0.55 \pm 0.28)e\tilde{d}_u - (1.1 \pm 0.55)e\tilde{d}_d + (50 \pm 40) \,\text{MeV}e\,\tilde{d}_G .$$

Electric dipole moments and the search for new physics

Ricardo Alarcon, Jim Alexander, Vassilis Anastassopoulos, Takatoshi Aoki, Rick Baartman, 5 Stefan Baeßler, 6,7 Larry Bartoszek, Bouglas H. Beck, Franco Bedeschi, 10 Robert Berger, 11 Martin Berz, 12 Tanmoy Bhattacharya 0, 13, a Michael Blaskiewicz, 14 Thomas Blum, 15, b Themis Bowcock, 16 Kevin Brown, 14 Dmitry Budker, 17, 18 Sergey Burdin, 16 Brendan C. Casey, 19 Gianluigi Casse, 20 Giovanni Cantatore, 21 Lan Cheng, 22 Timothy Chupp, 20 Vince Cianciolo, 23 Vincenzo Cirigliano³, 13, 24, c Steven M. Clayton, 25 Chris Crawford, 26 B. P. Das, 27 Hooman Davoudiasl, 14 Jordy de Vries, 28, 29, d David DeMille, 30, 31, e Dmitri Denisov, 14 Milind V. Diwan, 14 John M. Dovle, 32 Jonathan Engel, 33 George Fanourakis, 34 Renee Fatemi, 35 Bradlev W. Filippone, 36 Nadia Fomin, 37 Wolfram Fischer, 14 Antonios Gardikiotis, 38, 3 R. F. Garcia Ruiz, 39 Claudio Gatti, 40 James Gooding, 16 Peter Graham, 41 Frederick Gray, 42 W. Clark Griffith, 43 Selcuk Haciomeroglu, 44 Gerald Gwinner, 45 Steven Hoekstra, 46, 47 Georg H. Hoffstaetter, 2 Haixin Huang, ¹⁴ Nicholas R. Hutzler[©], ^{48, f} Marco Incagli, ¹⁰ Takeyasu M. Ito[©], ^{25, g} Taku Izubuchi, ⁴⁹ Andrew M. Jayich, 50 Hoyong Jeong, 51 David Kaplan, 52 Marin Karuza, 53 David Kawall, 54 On Kim, 44 Ivan Koop, 55 Valeri Lebedev, 19 Jonathan Lee, 56 Soohyung Lee, 44 Kent K. H. Leung, 57 Chen-Yu Liu, ^{58, 9, h} Joshua Long, ^{58, 9} Alberto Lusiani, ^{59, 10} William J. Marciano, ¹⁴ Marios Maroudas, Andrei Matlashov, 44 Nobuyuki Matsumoto, 60 Richard Mawhorter, 61 Francois Meot, 14 Emanuele Mereghetti, 13 James P. Miller, 62 William M. Morse, 63, i James Mott, 62, 19 Zhanibek Omarov, 44,64 Chris O'Shaughnessy, 25 Cenap Ozben, 65 Seong Tae Park, 44 Robert W. Pattie Jr., ⁶⁶ Alexander N. Petrov, ^{67,68} Giovanni Maria Piacentino, ⁶⁹ Bradley R. Plaster, ²⁶ Boris Podobedov, ¹⁴ Matthew Poelker, ⁷⁰ Dinko Pocanic, ⁷¹ V. S. Prasannaa, ²⁷ Joe Price, ¹⁶ Michael J. Ramsey-Musolf, 72,73 Deepak Raparia, 14 Surjeet Rajendran, 52 Matthew Reece, 74, j Austin Reid, 58 Sergio Rescia, 14 Adam Ritz, 75 B. Lee Roberts, 62 Marianna S. Safronova, 76 Yasuhiro Sakemi, 77 Andrea Shindler, 78 Yannis K. Semertzidis 44,64, k Alexander Silenko, 79 Jaideep T. Singh, 80 Leonid V. Skripnikov, 67,68 Amarjit Soni, 14 Edward Stephenson, 58 Riad Suleiman, 81 Avaki Sunaga, 82 Michael Syphers, 83 Sergev Syritsyn, 84 M. R. Tarbutt, 85 Pia Thoerngren, 86 Rob G. E. Timmermans, 87 Volodya Tishchenko, 14 Anatoly V. Titov, 67,68 Nikolaos Tsoupas, 14 Spyros Tzamarias. 88 Alessandro Variola. 40 Graziano Venanzoni, 10 Eva Vilella, 16 Joost Vossebeld. 16 Peter Winter[®], ^{89,1} Eunil Won, ⁵¹ Anatoli Zelenski, ¹⁴ Yan Zhou, ⁹⁰ and Konstantin Zioutas³

¹Arizona State University, Tempe, AZ 85287, USA ²Cornell University, Ithaca, New York, USA ³University of Patras, Dept. of Physics, Patras-Rio, Greece ⁴The University of Tokyo, Meguro-ku, Tokyo, Japan ⁵TRIUMF, Vancouver, British Columbia, Canada ⁶University of Virginia, 382 McCormick Road, Charlottesville, VA 22903, USA Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA ⁸Bartoszek Engineering, Aurora, IL 60506, USA ⁹University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA ¹⁰ National Institute for Nuclear Physics (INFN-Pisa), Pisa, Italy ¹¹Philipps-Universitaet Marburg, Fachbereich Chemie, Hans-Meerwein-Str. 4, 35032 Marburg, Germany ¹²Michigan State University, East Lansing, Michigan, USA ¹³ T-2, Los Alamos National Laboratory, Los Alamos, NM 87545, USA ¹⁴Brookhaven National Laboratory, Upton, New York, USA ¹⁵Department of Physics, University of Connecticut, USA ¹⁶University of Liverpool, Liverpool, UK ¹⁷ Helmholtz-Institute Mainz, Johannes Gutenberg University, Mainz, Germany ¹⁸ University of California at Berkeley, Berkeley, California, USA

Other news on EDMs

arXiv:2511.03786v1 [hep-ph] 5 Nov 2025

Light new physics and the τ lepton dipole moments

Martin Hoferichter¹ and Gabriele Levati¹

¹Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

 $a_{\mu}^{\text{exp}} = 116\,592\,071.5(14.5) \times 10^{-11}$ $a_{e}^{\text{exp}} = 115\,965\,218\,059\,(13) \times 10^{-14}$ $d_{e}^{\text{exp}} < 4.1 \times 10^{-30}\,e\,\text{cm}$ $d_{\mu}^{\text{exp}} < 2 \times 10^{-19}\,e\,\text{cm}$

Testing New-Physics (NP) scenarios that couple predominantly to the third generation is notoriously difficult experimentally, as exemplified by comparing limits for the τ lepton dipole moments to those of electron and muon. In this case, extracting limits from processes such as $e^+e^- \to \tau^+\tau^-$ often relies on effective-field-theory (EFT) arguments, which allows for model-independent statements, but only applies if the NP scale is sufficiently large compared to the center-of-mass energy. In this work we offer a comprehensive analysis of light NP contributions to the τ dipole moments, providing a detailed account of the interpretation of asymmetry measurements in $e^+e^- \to \tau^+\tau^-$ that are tailored towards the extraction of dipole moments, for the test cases of new light spin-0 and spin-1 bosons. Moreover, we study the decoupling to the EFT limit in these scenarios and discuss the complementarity to constraints from other related processes, such as production in e^+e^- reactions. While covering a wide range of light NP scenarios, as specific case study we present a detailed discussion of a tauphilic gauge vector boson at Belle II.

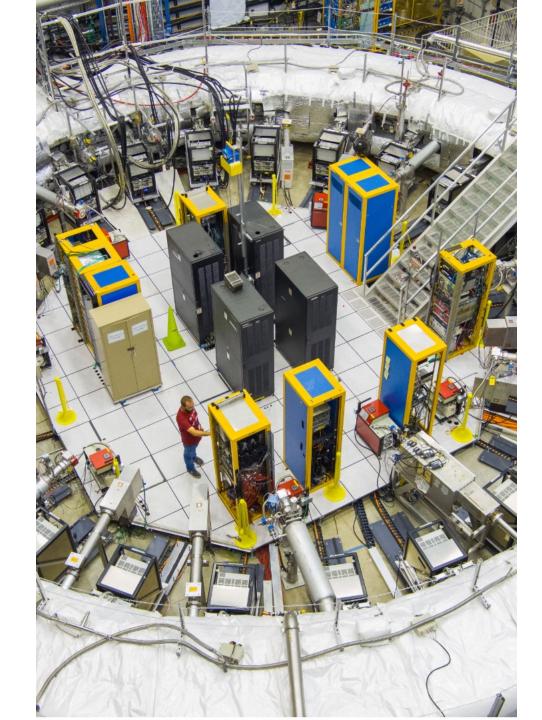
Other news on EDMs

First non-zero measurement of a nuclear electric dipole moment

Gary Prézeau^{1,*}

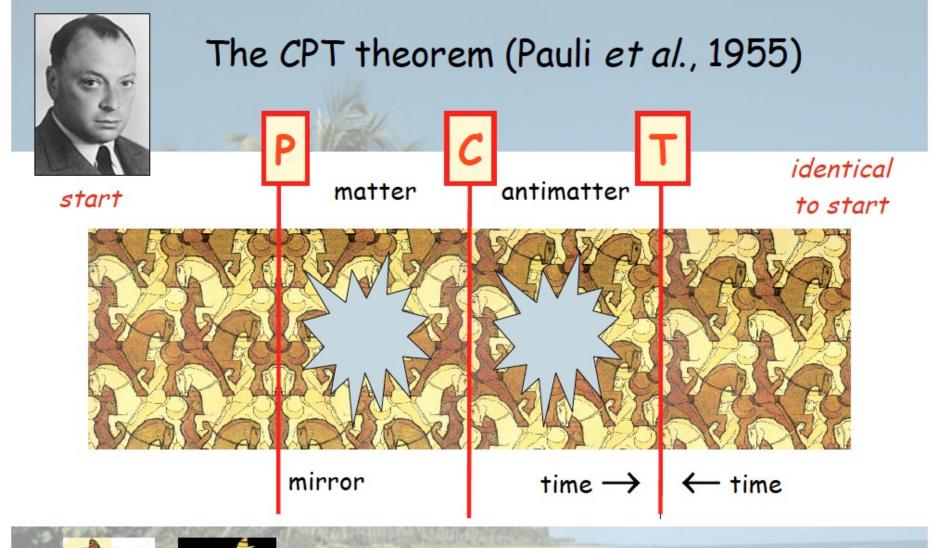
¹League of Independent Scientists and Teachers (LOISAT), Torrance, 90501, CA, USA

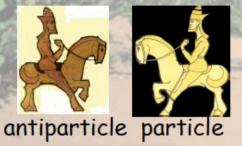
This paper reports the first non-zero measurement of a nuclear electric dipole moment using a novel method based on the rate of change of a supercurrent first proposed in 2016 [1] and fleshed out in this current paper. The theory, experimental concept and implementation are described in detail. The non-zero nuclear electric dipole moment measured with over 1000 hours of data was that of ¹⁸¹Ta producing a best value $|d_e^{\text{Ta}}| = (3.39 \pm 0.31_{\text{stat}}) \cdot 10^{-32} e \cdot \text{cm}$ and $|d_e^{\text{Ta}}| = (3.39 \pm 3.18) \cdot 10^{-32} e \cdot \text{cm} > 0$ at 99.985%CL. There is an uncertainty on the value of overall multiplicative parameters such as the self-inductance of the superconducting circuit ($\pm 4\%$), the mutual inductance between the SQUID pickup coil and the sample wire ($\pm 15\%$), and the magnitude of the solenoid current ($\pm 5\%$). An upper-limit was estimated for the control element, ²⁰⁷Pb, $|d_e^{\text{Pb}}| \lesssim 1.2 \cdot 10^{-31} e \cdot \text{cm}$ at 95%CL.


From g-2 to EDM — Precision Spin Physics at Work

- Muon g–2 @ Fermilab: World's most precise SM magnetic moment test.
- Since 1987: From BNL to Fermilab over 35 years storage ring magnetic/electric dipole moment work
- Final g–2 result announced this week historic milestone.
- g–2 and EDM use spin precession in storage rings to probe fundamental physics.

From muons to protons


- Muons:
- Observe time and energy
- Muon lifetime: 64.4 μs (a whole storage time lasts ~1ms)

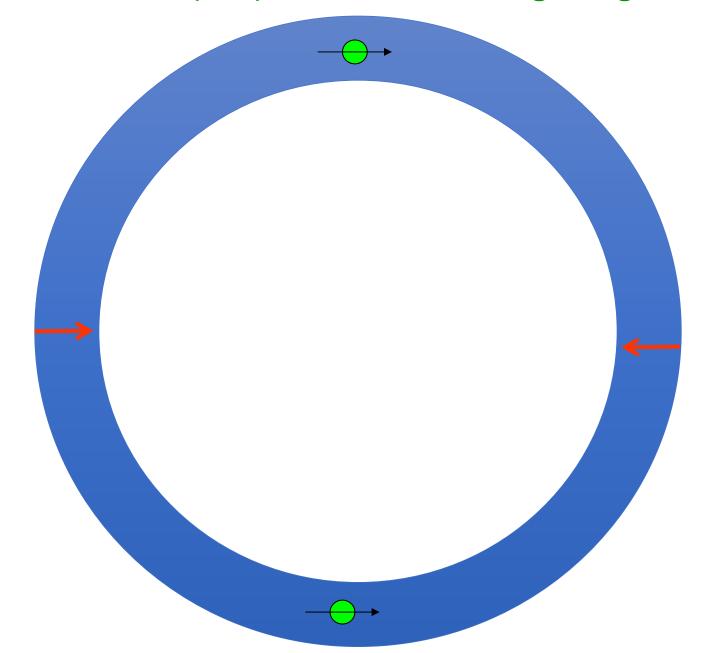

- Proton EDM:
- Proton polarimetry
- Proton beam with "infinite" lifetime and small phase-space for huge statistics gain

Motivation of pEDM at 10⁻²⁹ e-cm

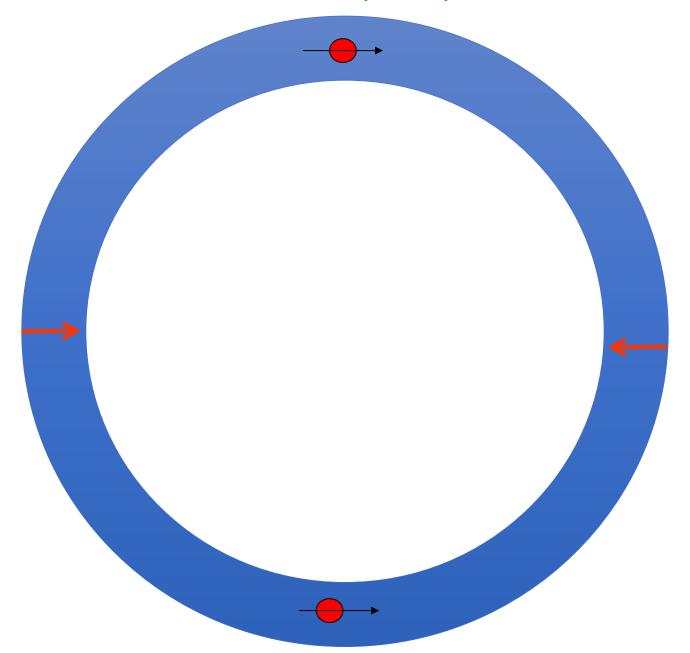
- Probe New Physics, at $\sim 10^3$ TeV mass scale, Higgs CPV
- Could help explain level of baryon-antibaryon asymmetry in our universe
- Improve sensitivity to $\theta_{\rm OCD}$ by three orders of magnitude
- Direct search for axion dark matter (axion-gluon coupling). Could cross-check gluonic coupling, should axions are detected with microwave cavities.

Holds on very general grounds:

Nature is local, causal & Lorentz invariant.

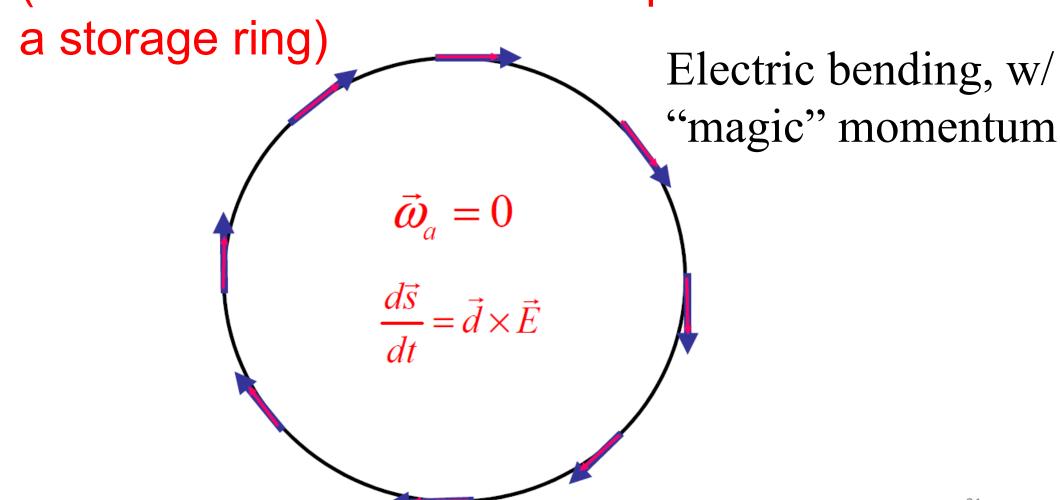

True for all gauge theories!

After H. Wilschut


T-time symmetry

• T-symmetry describes physics phenomena that are independent of the direction of time.

Clock-wise (CW) motion in a storage ring

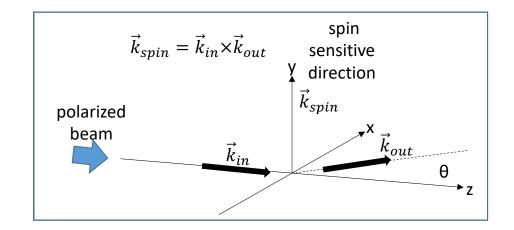


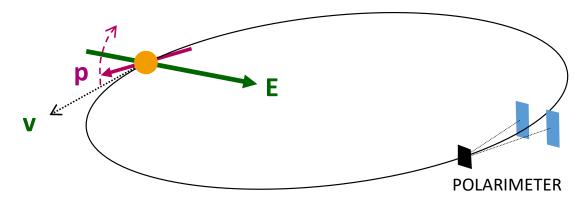
Counter-Clock-wise (CCW) motion

Storage Ring EDM experiments

(or how to create a Dirac-like particle in

Electric fields: Freezing the g-2 spin precession

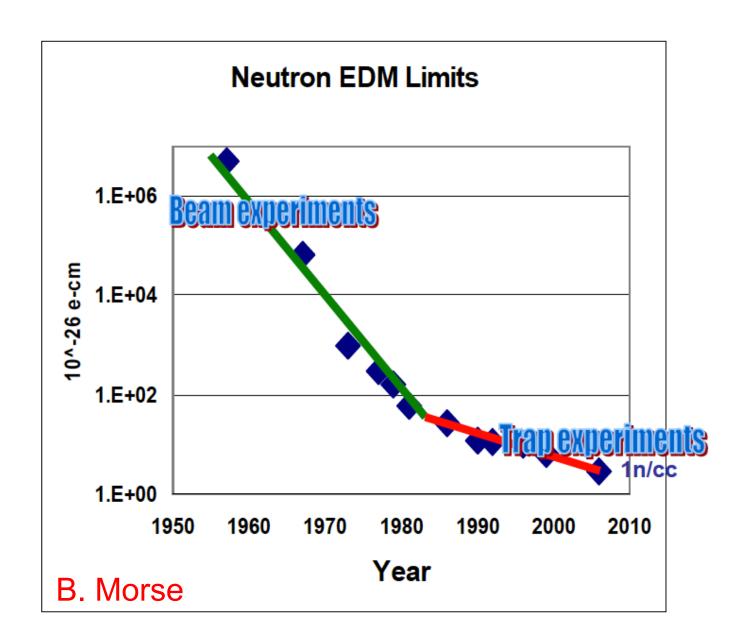

$$\vec{\omega}_a = -\frac{q}{m} \left[a - \left(\frac{mc}{p} \right)^2 \right] \frac{\vec{\beta} \times \vec{E}}{c} = 0$$


• The g-2 spin precession is zero at "magic" momentum (3.1GeV/c for muons,...), so the focusing system can be electric

$$p = \frac{mc}{\sqrt{a}}$$
, with $a = G = \frac{g-2}{2}$, $\gamma_m = \sqrt{1 + 1/a}$

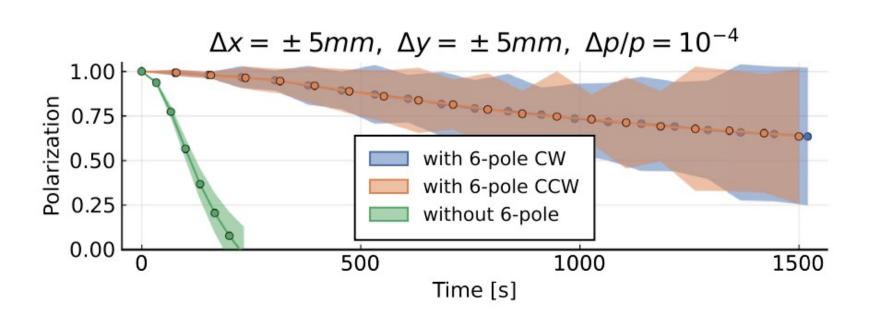
• The "magic" momentum concept with electric focusing was first used in the last muon g-2 experiment at CERN, at BNL & FNAL.

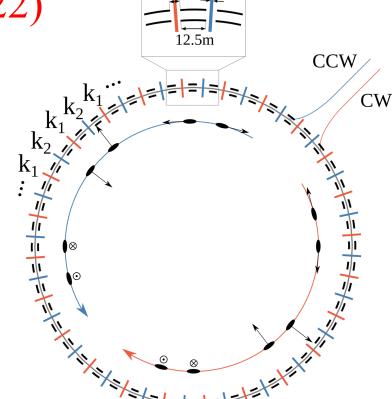
Storage ring Electric Dipole Moments



Phys. Rev. Lett. 93, 052001 (2004)

Frozen spin method:


- Spin aligned with the momentum vector
- Radial E-field precesses EDM/spin vertically
- Monitoring the spin using a polarimeter


Proton storage ring EDM experiment is combination of beam + a trap

Hybrid, symmetric lattice storage ring. Spin Coherence Time with sextupoles

4.16m 40cm

Hybrid (magnetic and elecric) sextupoles were used to achieve long SCT.

SCT with Intra-Beam-Scattering/Stochastic-Cooling is >>10 longer

Proton Statistical Error (233MeV): 10⁻²⁹ e-cm

Phys. Rev. D **104**, 096006 (2021)

$$\sigma_d = \frac{2.33\hbar}{E_R P A \sqrt{N_c f \tau_p T_{tot}}}$$

```
\tau_p: 2×10<sup>3</sup>s Polarization Lifetime (Spin Coherence Time)
```

A: 0.6 Left/right asymmetry observed by the polarimeter

P: 0.8 Beam polarization

 N_c : 4×10¹⁰p/cycle Total number of stored particles per cycle (10³s)

 T_{Tot} : 2×10⁷s Total running time per year

f: 1% Useful event rate fraction (efficiency for EDM)

E_R: 4.5 MV/m Radial electric field strength

Studying ways to increasing efficiency; Quantum readout?²⁶

Can we do better than $10^{-29} e \cdot \text{cm}$?

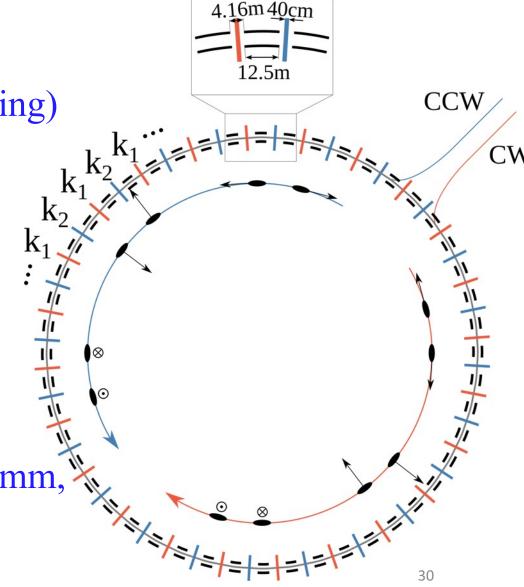
More efficient polarimeter (quantum readout?)

Spin coherence time (SCT) >> 2000s

Stochastic cooling (more beam, even longer-"infinite" SCT)

Combined electric bending/magnetic focusing ring

Possible, perhaps at least on statistics, to reach down to SM


Issues/solutions: Electric bending, IBS and SCT

- In storage rings where a significant part of pending is provided by electric fields: Critical impact on IBS (intra-beam-scattering) and SCT (spin-coherence-time).
- IBS and negative slip factor (above transition for stable storage) prolongs SCT very effectively due to the exchange of phase-space populations.
- Stochastic cooling can be further used to effectively combat IBS and prolong SCT to "infinity".

Systematics

Symmetries against systematic errors

- Clock-wise (CW) vs. Counter-Clock-Wise (CCW)
 - Eliminates vertical Electric field background
- Hybrid lattice (electric bending, magnetic focusing)
 - Shields against background magnetic fields
- Highly symmetric lattice (24 FODO systems)
 - Eliminates vertical velocity background
- Positive and negative helicity
 - Handles polarimeter systematic errors
- Flat ring to 0.1 mm, beams overlap within 0.01 mm, spin-based alignment, quad current flipping
 - Geometrical phases; High-order vertical E-fields

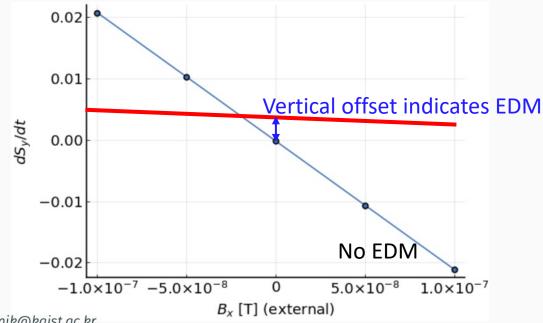
Spin-based alignment

• Spin-based alignment for effects that depend on combination of two or more background fields.

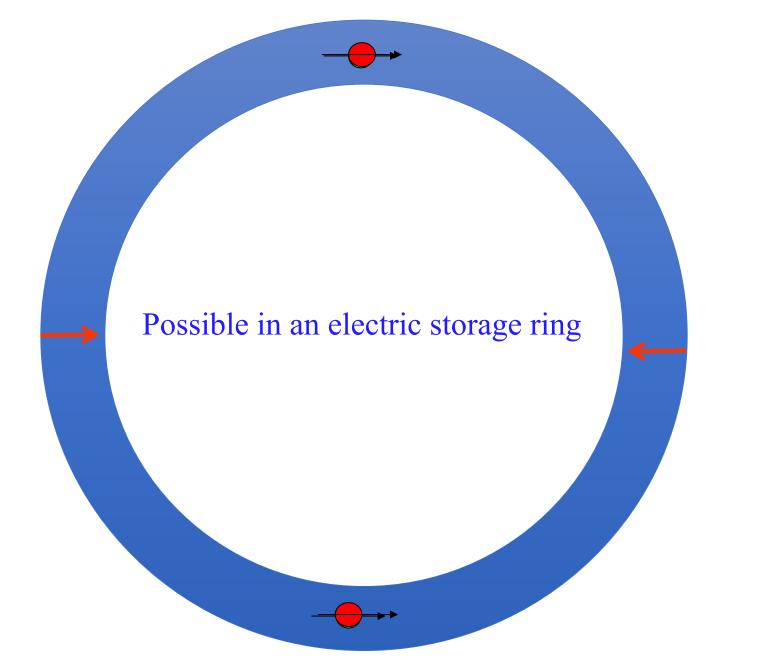
• Use spin of stored particles to provide information on the background fields

• Counter-act the background fields to level the ring lattice (0.1mm) and reduce the CW and CCW beam separation to the specs (0.01mm).

Spin-based alignment/background reduction

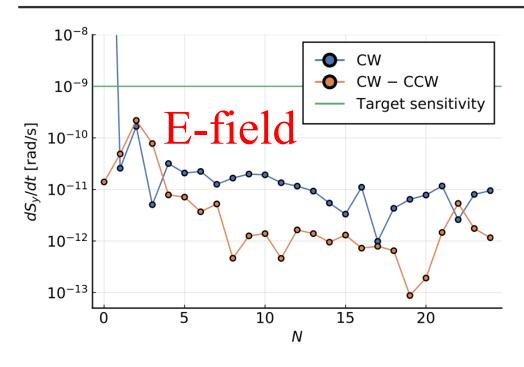

• Omarov's method: a combination of background fields can create false EDM signals. Artificially inflate one component to reduce the other.

From Zhanibek Omarov's presentation


Varying B_x

- Vary the radial B-field (B_x) and observe the ds_v/dt slope vs. B_x .
- The EDM signal does not depend on the value of B_r .
- Tune out the background field (here electric field focusing) until we get zero slope in ds_v/dt vs. B_x .

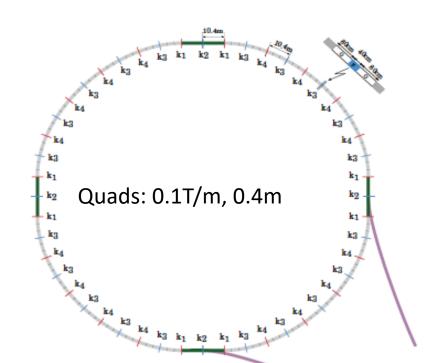
 \cdot Slope indicates m present for each N


Simultaneous clock-wise and counter-clock-wise motion

E_v and B_x effects as a function of azimuthal harmonic N

COMPREHENSIVE SYMMETRIC-HYBRID RING DESIGN FOR A ...

PHYS. REV. D **105**, 032001 (2022)


10⁻¹⁰
B-field

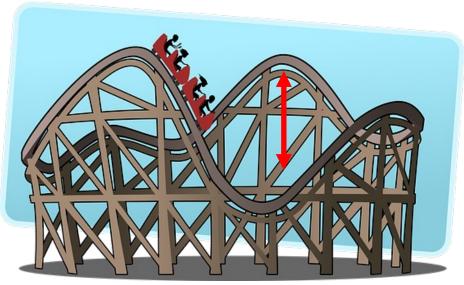
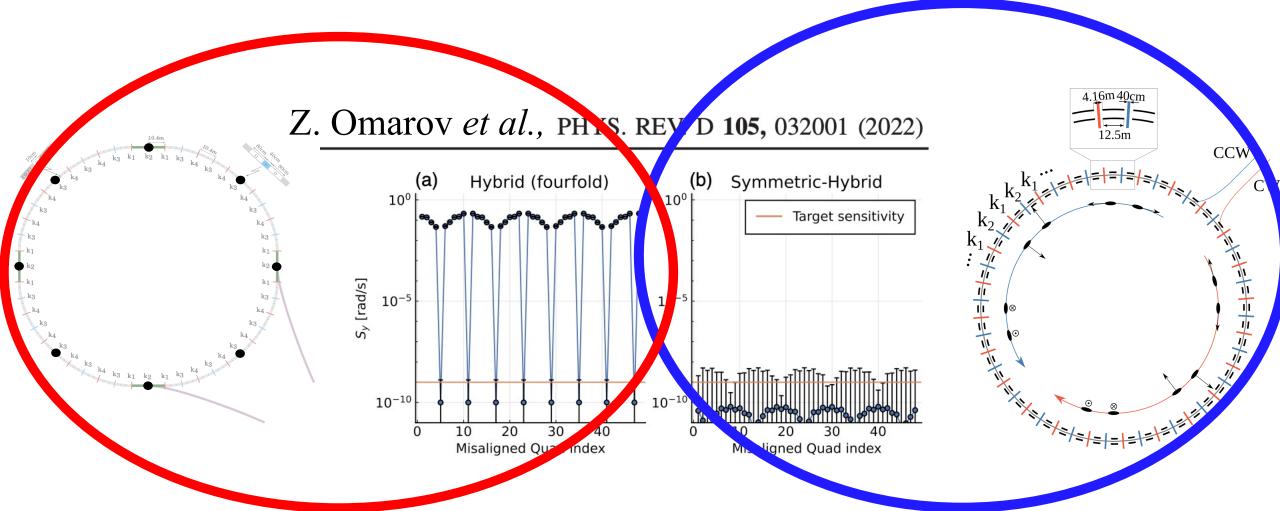

10⁻¹⁰
10⁻¹¹
10⁻¹²
10⁻¹³
0
5
10
15
20

FIG. 7. Longitudinal polarization case $S_s = 1$, sensitive to EDM. Vertical spin precession rate vs $E_y = 10 \text{ V/m}$ field N harmonic around the ring azimuth. For N = 0, the precession rate for the CW (or CCW) beam is around 5 rad/s. The difference of the precession rates for CR beams (orange) is below the target sensitivity for all N. Irregularities of the low values are due to the inability to determine the exact precession rate from the simulation results. Hence, the points only show a statistical upper limit of the possible vertical precession rate; actual rates could be lower. More about this is in Appendix B.

FIG. 8. Longitudinal polarization case $S_s = 1$, CW beam only. Vertical spin precession rate vs $B_x = 1$ nT field N harmonic around the ring azimuth. The magnetic field amplitude is chosen to be similar to beam separation requirements in Sec. IVA, and more than $B_x = 1$ nT splits the CR beams too much. Irregularities of the low values are due to the inability to determine the exact precession rate from the simulation results. Hence, the points only show a statistical upper limit of the possible vertical precession rate; actual rates could be lower. More about this is in Appendix B.


Ring planarity is important

0.1 mm

Symmetries play a critical role in combating systematic errors due to vertical velocity.

Radially polarized beam is shown here; sensitive to Vector Dark Matter/Dark Energy, P. Graham *et al.*, PRD, 055 010, 2021. Use longitudinally polarized bunches for sensitivity to EDM (>10⁴ times less sensitive to vertical velocity effect).

Vertical velocity and geometrical phase effects:

Magnetic quadrupoles 0.2T/m, positioning accuracy dominates background B-fields Mitigation by flipping quad polarity in $\sim 10^5$ separate beam injections

ZHANIBEK OMAROV et al.

PHYS. REV. D **105**, 032001 (2022)

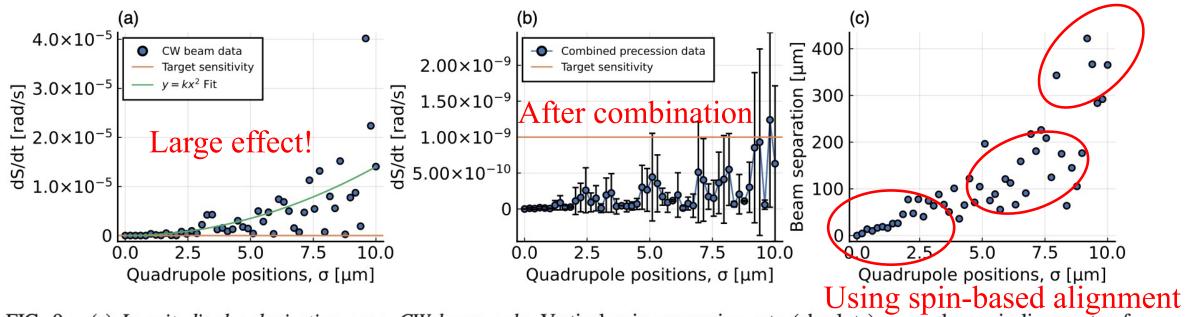
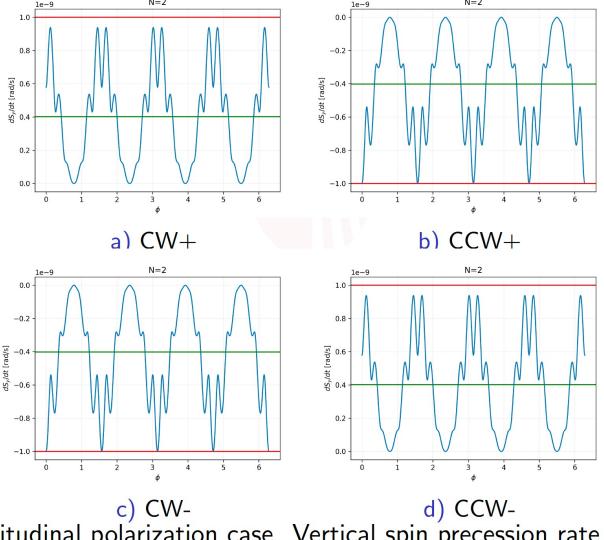
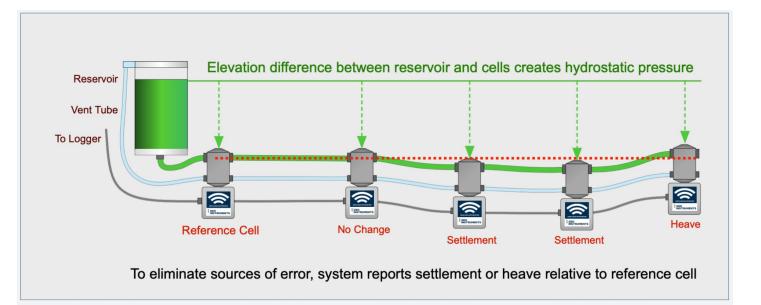
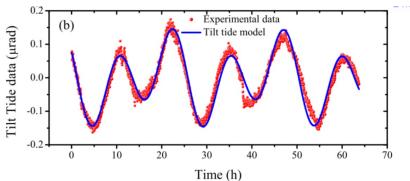



FIG. 9. (a) Longitudinal polarization case, CW beam only. Vertical spin precession rate (absolute) vs random misalignments of quadrupoles in both x, y directions by rms σ with different seeds per each point (when the same seeds are used everywhere, the $y = kx^2$ fit is perfect, meaning that every point can be extrapolated to any rms σ value using this functional form). Combination with CCW and quadrupole polarity switching achieves large cancellation—see part (b). (b) CW and CCW beam and with quadrupole polarity switching. Total combination as presented in Appendix C. Notably, the background vertical spin precession rate (absolute) stays below the target sensitivity. Irregularity of the points is discussed in Appendix B. (c) Correspondence between CR beam separation and rms σ quadrupole misalignments.

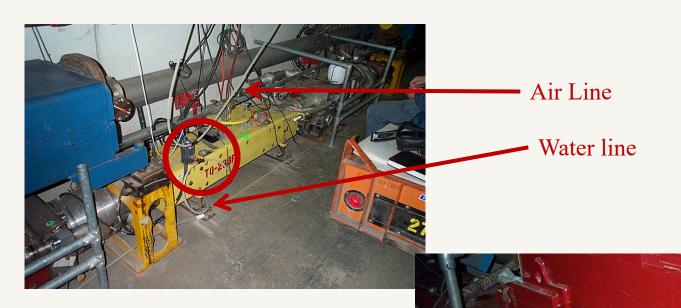
Systematic effects due to electric quadrupole effects


Jonathan Lee (SBU) PhD thesis defense


Figure: Longitudinal polarization case. Vertical spin precession rate vs $B_x = 1 \ nT$ field with the presented E_y - vertical electric quadrupole field N harmonics around the ring azimuth ϕ for N=2.

Ring planarity critical to control geometrical phase errors

Numerous studies on slow ground motion in accelerators,
 Hydrostatic Level System for slow ground motion studies at Fermilab.


• Thorough review by Vladimir Shiltsev (FNAL): https://arxiv.org/pdf/0905.4194.pdf

Tevatron Sensors on Quad

In the circle is a water level pot on a Tevatron quadrupole

Quadrupole at E 11 During Quench

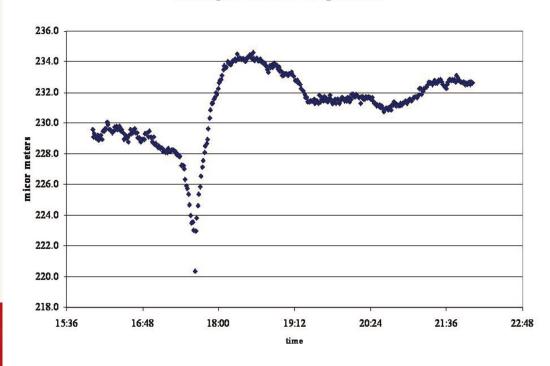


Figure 6 Quench near Quadrupole E11

3. THE HLS AT THE SWISS LIGHT SOURCE SYNCHROTRON (SLS)

For monitoring the underground of the new built storage ring of the Swiss Light Source (SLS) HLS at the at the Paul Scherrer Institute (PSI) Switzerland bighest as 1.0 over more than 10 years was required. As liquid loss over such long periods cannot be eliminated, the use of a differential pressure system was not suitable. Thus, the principle of the half-filled pipes was chosen, where a slow liquid loss is irrelevant. The HLS installed at the SLS was designed to meet the following specifications: measuring range 14 mm, resolution 0.0005 mm, accuracy better than 0.01 mm. The storage ring of the synchrotron (Fig. 4a) is subdivided into 12 sectors, each containing four girders on which the focusing electromagnets are mounted. Every girder is monitored by four installed level sensors (LS) (Fig. 4b). This leads to a total amount of 192 LS, which are linked together by half-full steel pipes with a total length of 450 m.

Swiss Light Source Synchrotron

Fig. 4a): Storage ring of the SLS.

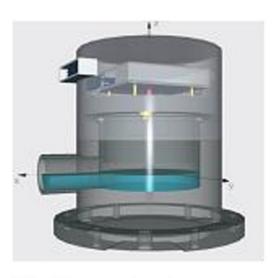


Fig.4b): HLS level sensor.

Figure 8a: Synchrotron Swiss Light Source SLS at the Paul Scherrer Institute, Switzerland, near the German border an near the river Aare.

Figure 8b: Storage ring of the SLS during construction.

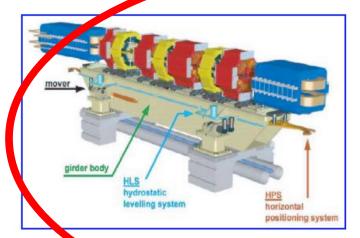


Figure St. Girder body carrying the electromagnets. The movers are incretioned to move the whole girder in order to re-adjust the electromagnets. The girder movement is monitored by the HLS.

Figure 9b: Level sensor (LS) mounted on the girder. Below it an eccentric cam dice is visible.

HLS at the Swiss Light Source Synchrotron

3. THE HLS AT THE SWISS LIGHT SOURCE SYNCHROTRON (SLS)

For monitoring the underground of the new at the Paul Scherrer Institute (PSI), Switzerl over more than 10 years was required. As li eliminated, the use of a differential pressure the half-filled pipes was chosen, where a ske the SLS was designed to meet the following resolution 0.0005 mm, accuracy better than (Fig. 4a) is subdivided into 12 sectors, each electromagnets are mounted. Every girder is (Fig. 4b). This leads to a total amount of 192 pipes with a total length of 450 m.

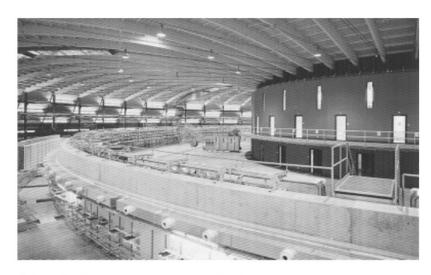
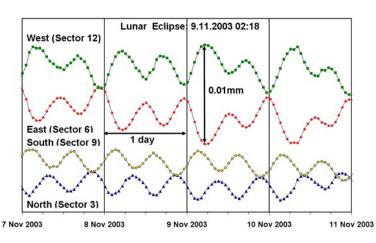
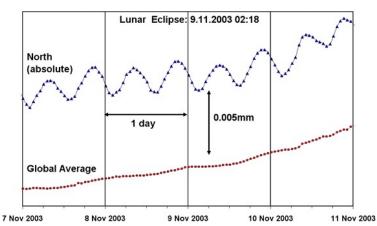
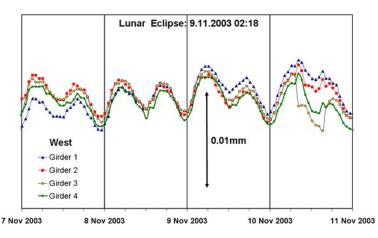


Fig. 4a): Storage ring of the SLS.

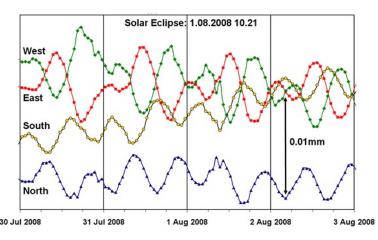

Fig. 5a): A four day period of the year 2003 with a time resolution of 1 hour. The influence of the Earth tides with 2 periods a day is clearly visible. Note the high amplitude difference between East and West during the eclipse of the moon.

Fig. 6a): Average of the absolute values of sector north und and the average value of all 192 signals, which is subtracted to balance the liquid loss.

Fig. 5b): Variation of single signals in sector west. Signals of the first HLS sensor on each girder are plotted.

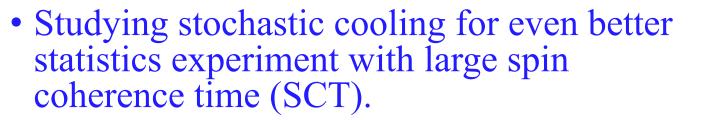
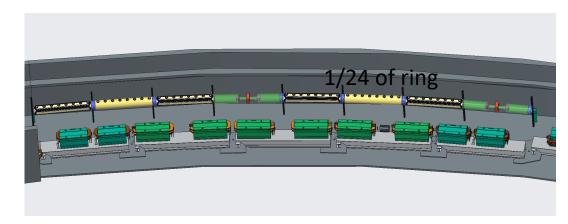
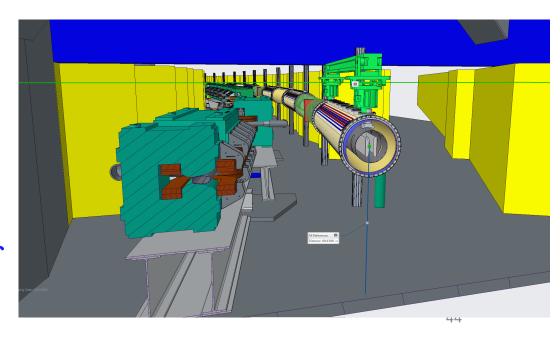


Fig. 6b): Same sensors as in Fig. 5a during a solar eclipse 5 years later. The signals are slightly more unstable, but they show good long-time stability.


What's next?


• BNL is funding an ongoing R&D, building one unit of the symmetric lattice for a ring in the AGS tunnel.

• Simulate beam/spin dynamics of thousands of protons at the same time.

Riad Suleiman's slide

Titanium Nitride (TiN) Coated Aluminum Electrodes

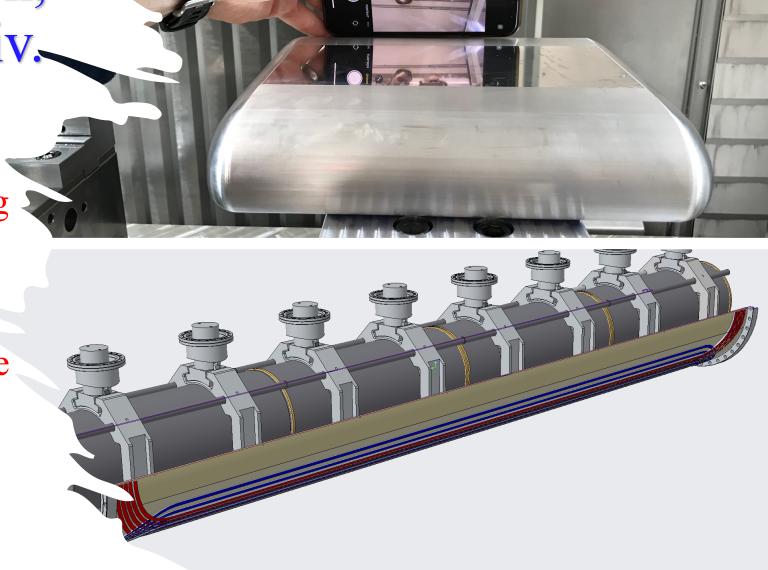
 A. Mamun et al., "TiN coated aluminum electrodes for DC high voltage electron guns", Journal of Vacuum Science & Technology A 33, 031604 (2015)

TABLE I. Relevant characteristics of candidate electrode materials at room temperature.

Material	Work function ϕ (eV)	Thermal conductivity (W/m K)	Electrical resistivity $(\mu\Omega \text{ cm})$	Hardness (GPa)	Elasticity modulus (GPa)	Density (g/cc)
SS316L	4.5 (Ref. 5)	16.3 (Ref. 6)	74 (Ref. 3)	1.5 (Ref. 6)	193 (Ref. 6)	8.0 (Ref. 6)
Niobium	4.3 (Ref. 7)	52 (Ref. 8)	14 (Ref. 8)	1.3 (Ref. 8)	104 (Ref. 8)	8.6 (Ref. 8)
Molybdenum	4.6 (Ref. 7)	142 (Ref. 8)	5.7 (Ref. 8)	2.2 (Ref. 8)	310 (Ref. 8)	10.9 (Ref. 8)
Ti-6Al-4V	4.5 (Ref. 1)	6.7 (Ref. 9)	178 (Ref. 9)	3.4 (Ref. 9)	114 (Ref. 9)	4.4 (Ref. 9)
Al6061	3.5 (Ref. 10)	167 (Refs. 9 and 11)	4 (Refs. 9 and 11)	1.47 ^a	70 ^a	2.7 (Refs. 9 and 1)
TiN coating	5.0 (Ref. 12)	11–67 (Ref. 13)	14 (Ref. 13), 270 (Ref. 14)	18.2ª	270 ^a	3.3 (Ref. 13)

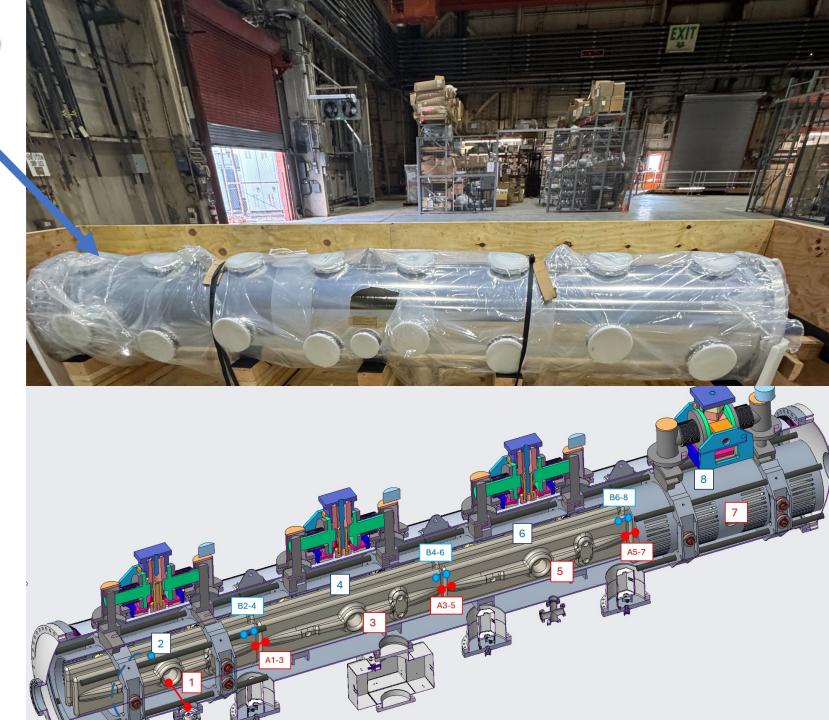
^aProperties of ion-beam enhanced deposition grown TiN coating on Al were measured in the present work.

- Aluminum electrodes were manufactured from Al6061alloy
- Aluminum electrodes required only hours of mechanical polishing using silicon carbide paper
- Coating is about 2.5 µm thick
- Baked at 200°C for 30 hours and achieved 10-11 Torr


Jefferson Lab

LDRD work, building 1 sector out of many

- HV measurements, requiring 4.5MV/m, tested at 5MV/m and measuring spark rate
- Dark current, can live with <1μA, targeting <1nA for every 1m section
- Vacuum requirements, 10⁻¹⁰ Torr a few hundred of seconds beam lifetime from IBS
- Stochastic cooling, reduce gas-pressure requirement, 'infinite' SCT, prolong storage time
- Control shape of fringe fields
- Ability to apply fields for probing geometric phase effects (combination of two fields)
- Probe and cancel electric focusing
- Study lattice impedance issues
- Alignment stability, make sure fields rotate locally within specs
- Equipment cross-compatibility, cross-talk
- Spin/beam dynamics simulation of $\sim 10^3$ particles at a time by multiple teams


Electric field plates mad with sub-micron finish, here at Liverpool Univ.

Liverpool University is designing the plates, and their support.
Involved in their construction, high accuracy electric field estimations, methods to minimize high-order fields...

4m "Deflection" chamber, partial section, at BNL.

Storage ring proton EDM at 10⁻²⁹ e-cm at BNL

- Statistics for better than 10^{-29} e-cm for pEDM, $\sim 10^3$ TeV New-Physics reach
- Matching systematic error levels, controlled by symmetries

- Build with a facility in mind
 - Proton EDM, simultaneous CW and CCW storage
 - Deuteron EDM (while running the proton EDM ring measure level of main systematic error source, i.e., E-field direction stability)
 - ³He EDM (neutron equivalent) and if needed pEDM with a hybrid lattice

Hybrid, symmetric lattice storage ring PRD105, 032001 (2021)

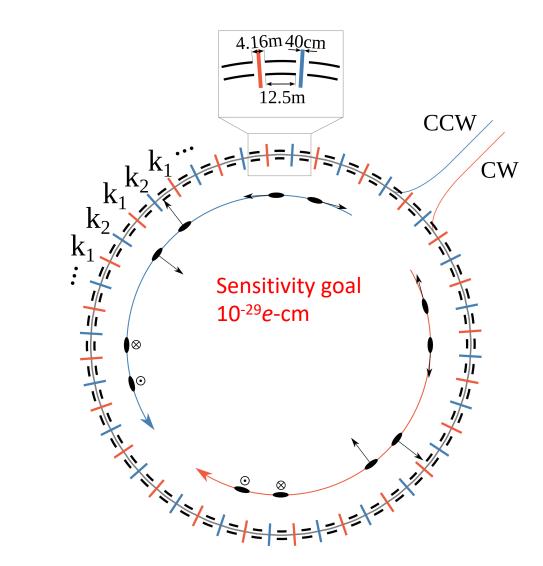


TABLE I. Ring and beam parameters for Symmetric Hybrid ring design

Quantity	Value	
Bending Radius R_0	95.49 m	
Number of periods	24	
Electrode spacing	$4\mathrm{cm}$	
Electrode height	$20\mathrm{cm}$	
Deflector shape	cylindrical	Low risk
Radial bending E -field	$4.4\mathrm{MV/m}$	
Straight section length	$4.16\mathrm{m}$	
Quadrupole length	$0.4\mathrm{m}$	
Quadrupole strength	$\pm 0.21\mathrm{T/m}$	
Bending section length	$12.5\mathrm{m}$	
Bending section circumference	$600\mathrm{m}$	
Total circumference	$799.68\mathrm{m}$	
Cyclotron frequency	$224\mathrm{kHz}$	
Revolution time	$4.46\mathrm{\mu s}$	
$\beta_x^{\max}, \ \beta_y^{\max}$	$64.54 \mathrm{m}, 77.39 \mathrm{m}$	Strong focusing
Dispersion, D_x^{max}	$33.81\mathrm{m}$	strong rocusing
Tunes, Q_x , Q_y	2.699, 2.245	
Slip factor, $\eta = \frac{dt}{t} / \frac{dp}{p}$	-0.253	
Momentum acceptance, (dp/p)	5.2×10^{-4}	
Horizontal acceptance [mm mrad]	4.8	
RMS emittance [mm mrad], ϵ_x , ϵ_y	0.214, 0.250	
RMS momentum spread	1.177×10^{-4}	
Particles per bunch	1.17×10^{8}	
RF voltage	$1.89\mathrm{kV}$	
Harmonic number, h	80	
Synchrotron tune, Q_s	3.81×10^{-3}	
Bucket height, $\Delta p/p_{\rm bucket}$	3.77×10^{-4}	
Bucket length	$10\mathrm{m}$	
RMS bunch length, σ_s	$0.994\mathrm{m}$	

The storage ring pEDM exp. at 10⁻²⁹ e-cm

- ✓ Required radial E-field <5 MV/m, for 40mm plate separation
- ✓ Beam and spin dynamics stable for required beam intensity
- ✓ Spin coherence time $>10^3$ s using sextupoles, no stochastic cooling (SC).
- ✓ With SC, SCT $\rightarrow \infty$

The srEDM exp. at 10^{-29} e-cm

- ✓ Alternate magnetic focusing all but eliminates external B-field sensitivity
- ✓ Symmetric lattice significantly reducing systematic error sources
- ✓ Required ring planarity <0.1mm; CW & CCW beam separation <0.01mm
- ✓ Geometrical phases require a combination of two unwanted fields. Enhance one to probe and reduce the other.

Input to hadronic EDM

Theta-QCD (part of the SM)

CP-violation sources beyond the SM

A number of alternative simple systems could provide invaluable complementary information (e.g. neutron, proton, deuteron,...).

• At 10⁻²⁹e•cm pEDM is at least an order of magnitude more sensitive than the current nEDM plans

Bill Marciano Snowmass Workshop, September 15, 2020

Proton edm SR goal: $d_p \sim 10^{-29} e$ -cm Improvement by more than 4 orders! Sensitivity similar to $d_e < 10^{-30} e$ -cm

In a renormalizable quantum field theory, at lowest order $d_p=0$ (No dim. 5 operators)

```
d_p \sim em/\Lambda_{NP}^2 \sin \phi^{NP} quantum loop induced \Lambda_{NP} scale of "new physics" \phi^{NP} = Complex CP violation phase of New Physics phase\ misalignment\ with\ m_p \sim 10^{-22}(1 TeV/\Lambda_{NP})^2 \sin \phi^{NP} e-cm
```

If ϕ^{NP} is of O(1), $\Lambda_{NP} \sim 3000 \text{TeV}$ Probed! (very roughly) If $\Lambda_{NP} \sim O(1 \text{TeV})$, $\phi_{NP} \sim 10^{-6}$ Probed!

Bill Marciano

Snowmass Workshop, September 15, 2020

a_f vs d_f (very roughly)

Two loop Higgs contribution: a_μ(H)≈fewx10⁻¹¹
 Both <u>Unobservably Small</u> a_e(H)≈5x10⁻¹⁶

EDM Higgs contribution: $d_e(H) \approx 10^{-26} \sin \varphi \ e^{-cm}$ $|d_n(H)| \approx |d_p(H)| \approx 3 \times 10^{-25} \sin \varphi \ e^{-cm}$ Already d_e bound implies $\sin \varphi_e \le 0.002$ (smaller?) Altmannshofer, Brod, Schmaltz JHEP (updated)

CP violation in BR($H\rightarrow yy$) $\gamma\gamma$ Collider?

Unlikely to be observable, but edm experiments can Explore down to $tan \phi \approx O(10^{-4})$! Unique!

17

P5 didn't rank it well despite the excellent Snowmass endorsement!

pEDM Experiment: funding and timeline

Alex Keshavarzi's slide Muon Collider Forum Report, arXiv:2209.01318 (2022) 2025 2030 HL-LHC Construction LBNF/DUNE MuColl **Pre-CDR Stage** Demo/TDR Stage pEDM [conservative] **TDR Stage** Operation Construction First publication From TDR to final publication in < 20 years. Can be started and finished by the new generation.

- Recent P5 report was not good for proton EDM at BNL Report of the 2023 Particle Physics Project Prioritization Panel Spec-S5 \$100-400N IceCube-Gen2 G3 Dark Matter DUNE FD3 DUNE FD4 G3 Dark Matter 2 srEDM \$60-100M DUNE MOND
- U.S. labour costs cost engineering underway.
 - Realistic savings already identified!
- May be substantially cheaper if constructed in UK/Europe!

- Paramount physics drivers:
 - Solve strong CP problem.
 - Baryon asymmetry.
 - Dark matter.

Arguably one of the most low-cost/high-return proposals in particle physics today!

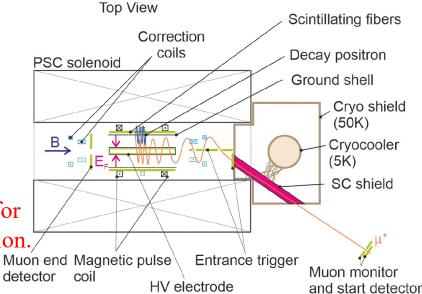
alexander.keshavarzi@manchester.ac.uk

X @alexkeshavarzi

Construction

FCC?

Exciting development: The very first frozen spin storage ring EDM measurement for the muon at PSI!


Injection and statistical sensitivity

- Large phase space at exit of beam,
 collimated by passage through SC -shield
- Due to adiabatic magnetic collimation large part of transmitted μ^+ are reflected.
- Simulations show, only about 0.4×10^{-3} muons can be stored

Slide by Philipp Schmidt-Wellenburg.

Uses CW vs. CCW injections plus spin flips for systematic error suppression.

$\sigma(d)$ –	ħ
$\sigma(d_{\mu}) =$	${2Pc\beta\gamma B\sqrt{N}} \tau_{\mu} \alpha$

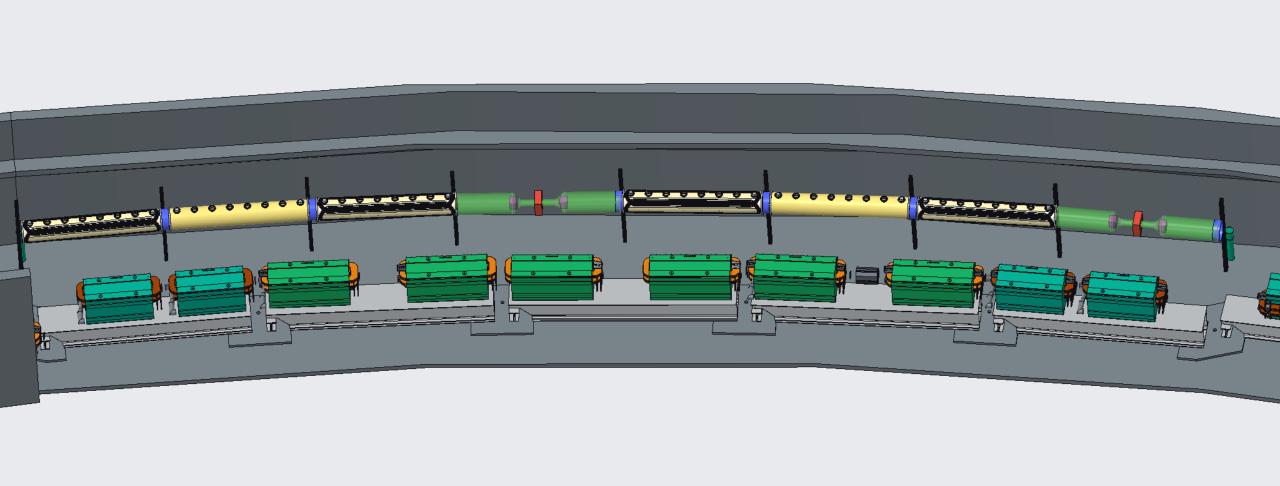
	π E1 "28 MeV/c"	μ E1 "125 MeV/c"
Muon flux (μ^+/s)	4×10^6	1.2×10^8
Channel transmission	0.03	0.005
Injection efficiency	0.004	0.60
Muon storage rate (1/s)	5×10^2	360×10^3
Gamma factor γ	1.024	1.56
e^+ detection rate (1/s)	400	90×10^3
Detections per 200 days	5.8×10^9	1.5×10^{12}
Mean decay asymmetry A	0.32	0.32
Initial polarization P_0	0.95	0.95
Sensitivity in one year $(e \cdot cm)$	$<4 \times 10^{-21}$	$<6\times10^{-23}$

Summary

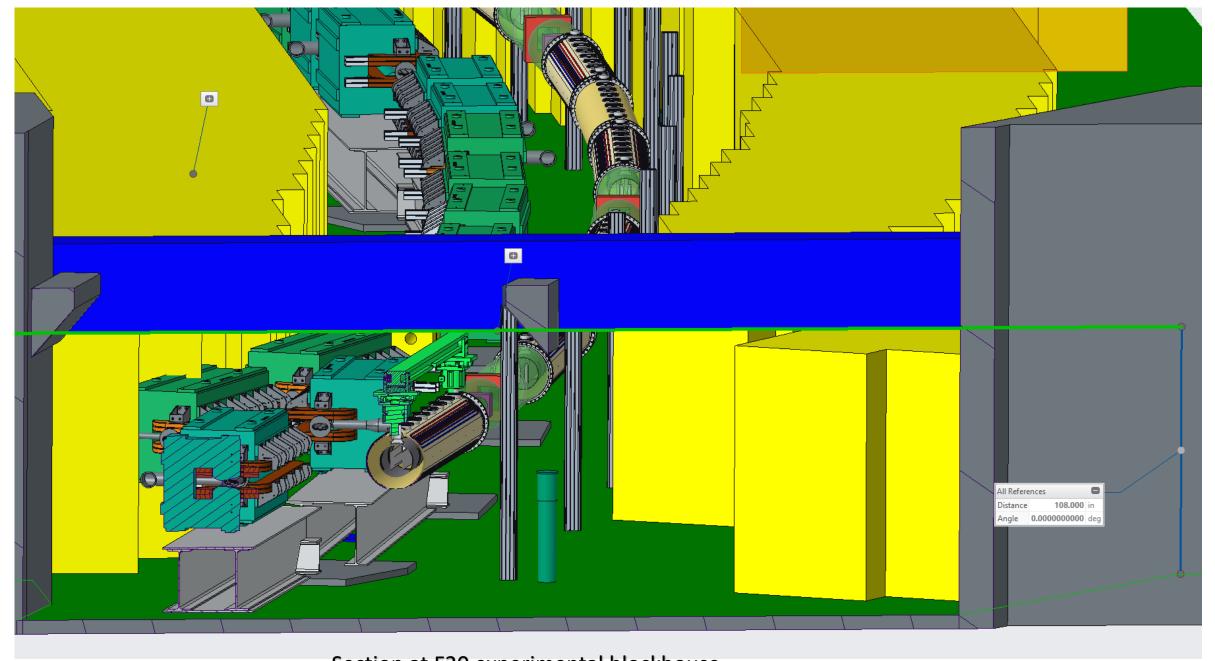
- ✓ Lattice QCD for the hadronic correction might be able to match experimental precision in <5 years. We can do better with the muon g-2 experiment.
- ✓EDM physics is must do, exciting and timely, CP-violation, axion physics.
- ✓ Hybrid, symmetric ring lattice works well. Minimized systematic error sources. Statistics and systematics to 10⁻²⁹e-cm. Recent PhD work confirmed studies by independent tools and gave insight into the symmetry workings.
- ✓pEDM lattice with "infinite" SCT and large acceptance provides the statistics
- ✓Ring planarity <0.1mm, CW & CCW beam separation <0.01mm
- ✓ Great complementarity between collider and high-precision physics!
- ✓ The same ring can be used for the deuteron, and ³He nuclei EDM too. Great Physics program for young people to be done in less than 20 years (Alex K.)

References

- 1. S. Karanth *et al.*, First search for axionlike particles in a storage ring using polarized deuteron beam, Phys. Rev. X13, 031004 (2023)
- 2. Z. Omarov *et al.*, Comprehensive Symm.-Hybrid ring design for pEDM experiment at below 10⁻²⁹*e*-cm, Phys. Rev. D 105, 032001 (2023)
- 3. P.W. Graham et al., Storage ring Probes for Dark Matter and Dark Energy, Phys. Rev. D 103 (2021) 5, 055010
- 4. S. Haciomeroglu and Y.K. Semertzidis, Hybrid ring design in the storage-ring proton EDM experiment, Phys. Rev. Accel. Beams 22 (3), 034001 (2019)
- 5. S.P. Chang *et al.*, Axionlike dark matter search using the storage ring EDM method, Phys. Rev. D 99 (8), 083002 (2019)
- 6. S. Haciomeroglu *et al.*, SQUID-based Beam Position Monitor, *PoS* ICHEP2018 (2019) 279
- 7. N. Hempelmann *et al.*, Phase locking the spin precession in a storage ring, Phys. Rev. Lett. 119 (1), 014801 (2017)
- 8. G. Guidoboni *et al.*, How to reach a Thousand-second in-plane Polarization Lifetime with 0.97 GeV/c Deuterons in a storage ring, Phys. Rev. Lett. 117 (5), 054801 (2016)
- 9. V. Anastassopoulos *et al.*, A storage ring experiment to detect a proton electric dipole moment, Rev. Sci. Instrum. 87 (11), 115116 (2016)
- 10. E.M. Metodiev *et al.*, Analytical benchmarks for precision particle tracking in electric and magnetic rings, NIM A797, 311 (2015)
- 11. E.M. Metodiev *et al.*, Fringe electric fields of flat and cylindrical deflectors in electrostatic charged particle storage rings, Phys. Rev. Accel. Beams 17 (7), 074002 (2014)
- W.M. Morse *et al.*, rf Wien filter in an electric dipole moment storage ring: The "partially frozen spin" effect, Phys. Rev. Accel. Beams 16 (11), 114001 (2013)
- 13. N.P.M. Brantjes *et al.*, Correction systematic errors in high-sensitivity deuteron polarization measurements, Nucl. Instrum. Meth. A664, 49 (2012)


59

- 14. G.W. Bennett *et al.*, An improved limit on the muon electric dipole moment, Phys. Rev. D 80, 052008 (2009)
- 15. F.J.M. Farley *et al.*, A new method of measuring electric dipole moments in storage rings, Phys. Rev. Lett. 93, 052001 (2004)


16. ...

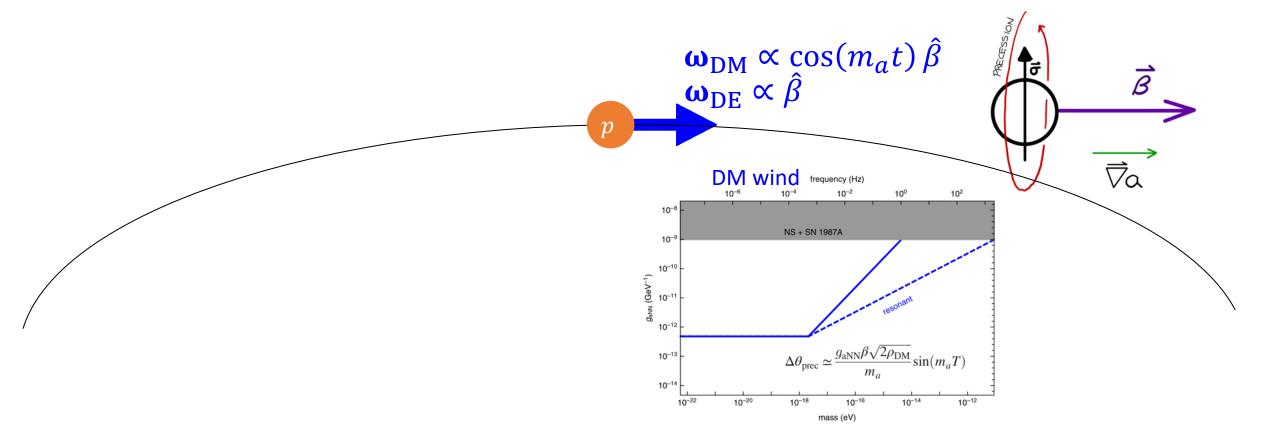
John Benante, Bill Morse in AGS tunnel of BNL, plenty of room for the EDM ring.

1/24 section (15°) of pEDM ring

Section at F20 experimental blockhouse Note: ceiling elevation = 108" (9'-0")

Classification of systematic errors at 10⁻²⁹ e-cm

- ✓ Alternate magnetic focusing allows simultaneous CW & CCW storage and shields against external B-fields. Vertical dipole E-fields eliminated (major syst. err. source), its own "co-magnetometer"; unique feature of this lattice.
- ✓ Symmetric lattice significantly reduces systematic errors associated with vertical velocity (major syst. err. source). Additionally, using longitudinal, radial and vertical polarization directions, monitor potential systematic error sources.

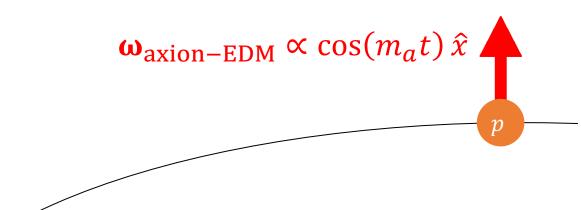

✓ Required ring planarity <0.1mm; CW & CCW beam separation <0.01mm, resolves issues with geometrical phases

Storage ring probes of DM/DE

Couplings with dark matter (DM) and dark energy (DE)

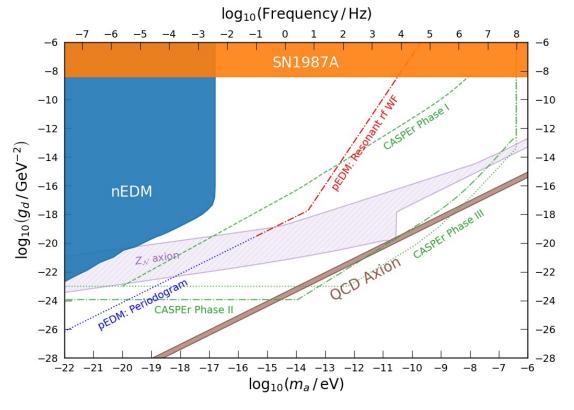
- P. Graham and S. Rajendran, PRD 88, 035023 (2013)P. Graham et al., PRD 103, 055010 (2021)
- ALP or vector DM wind $(g_{aNN}\nabla a \cdot \hat{\sigma}_N)$ ⇒ anomalous longitudinal oscillating B field.
- DE wind \Rightarrow anomalous longitudinal B field.

Storage ring is an optimal probe for wind coupling since β is large!



Storage ring probes of DM/DE

Couplings with dark matter (DM) and dark energy (DE)


- P. Graham and S. Rajendran, PRD 88, 035023 (2013)P. Graham et al., PRD 103, 055010 (2021)
- o ALP DM-EDM $(g_{aN\gamma}a\hat{\sigma}_N\cdot \mathbf{E})\Rightarrow$ oscillating EDM at m_a . For the QCD axion: $d_N^{\rm QCD}\approx 10^{-34}\cos(m_at)~e\cdot {\rm cm}$.

First experimental application at COSY 2019-2022

- Storage ring probes of axion-induced oscillating EDM
 S. Chang et al., PRD 99, 083002 (2019).
- Complementary method using an rf Wien filter
 On Kim and Y. Semertzidis, PRD 104, 096006 (2021)
- Parasitic measurement with pEDM experiment
 - Low frequency: Periodogram analysis.
 - High frequency: Resonant rf Wien filter.

ALP-EDM coupling

System	Risk factor, comments
Ring construction, beam storage, stability, IBS	Low. Strong (alternate) focusing, a ring prototype has been built (AGS analog at BNL) in 60's. Lattice elements placement specs are ordinary. IBS OK below transition.
E-field strength	Low. Plate-units are similar to those ran at Tevatron with higher specs.
E-field plates shape	Low. Make as flat as conventionally possible. Shim out high order fields by intentionally splitting the CR-beams
Spin coherence time	Low. Ordinary sextupoles will provide $\sim 10^3$ s, with stochastic cooling we expect much longer, under study.
Beam position monitors (BPM), SQUID-based BPMs.	Low, medium. Ordinary BPMs and HLS (similar to FNAL's) to level the ring to better than 0.1mm, Regular split-geometry and/or SQUID-based BPMs to check CR-beams split to 0.01mm.
High-precision, efficient	Low. We have several of them already, cross-checking our results

routinely. Need to scale it up (thousands of particles)

Low. Mature technology available

simulations software

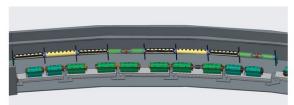
Polarimeter

66

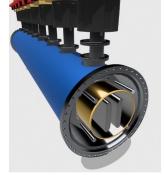
Status: what we already have done, what's missing

(Short) path to readiness

alexander.keshavarzi@manchester.ac.uk

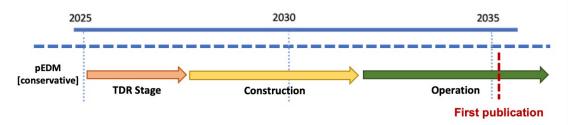

Alex Keshavarzi's slide

Main message: no showstoppers! Due diligence, physics case studies, moving to TDR phase...


Already completed...

Engineering/modelling complete + key systematics solved.

- Storage ring lattice
 - Polarized proton delivery
 - Viable site + ground stability
 - Prototype being built (strong UK input)
- Main EDM measurement and systematics
 - Counter-rotating beams/spin-alignment
 - Hybrid ring + systematics from field limits
 - Beam dimensions/polarisations/measurement



Top: 1/24 section (15°) of pEDM ring. Right: pEDM deflector (designed and under construction in the UK).

Work to be done...

- Precision beams studies (Muon g-2 experts).
- Options for improved polarimetry (e.g. CMOS).
- Alignment system, methodology and studies.
- Simulate 10³ particles for 10³ seconds beam lifetime.
- More realistic costing.
- Build community/collaboration!
 - Bring current pEDM communities together.
 - Increased UK involvement (you are invited!).
 - New generation to start and finish experiment.

You can do this experiment and publish hugely important physics (e.g. solve the strong CP problem!) in < 20 years!

Spin Coherence Time

 Not all particles have same deviation from magic momentum, or same horizontal and vertical divergence (second order effects)

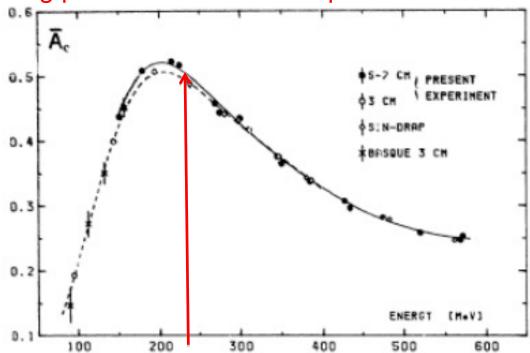
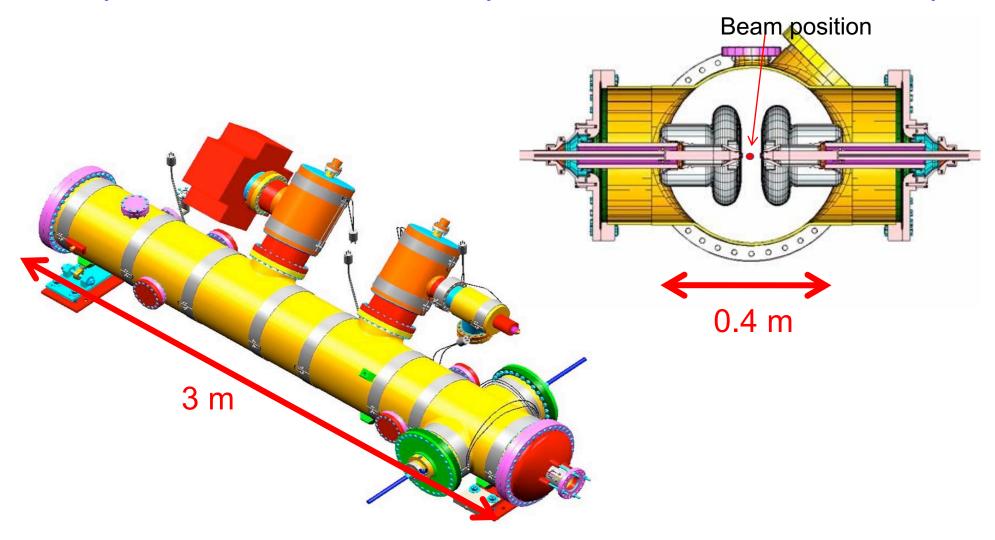
• They Cause a spread in the g-2 frequencies:

$$d\omega_a = a\vartheta_x^2 + b\vartheta_y^2 + c\left(\frac{dP}{P}\right)^2$$

 Correct by tuning plate shape/straight section length plus fine tuning with sextupoles (current plan) or cooling (mixing) during storage (under evaluation).

Is the polarimeter analyzing power good at P_{magic}? YES!

Analyzing power can be further optimized

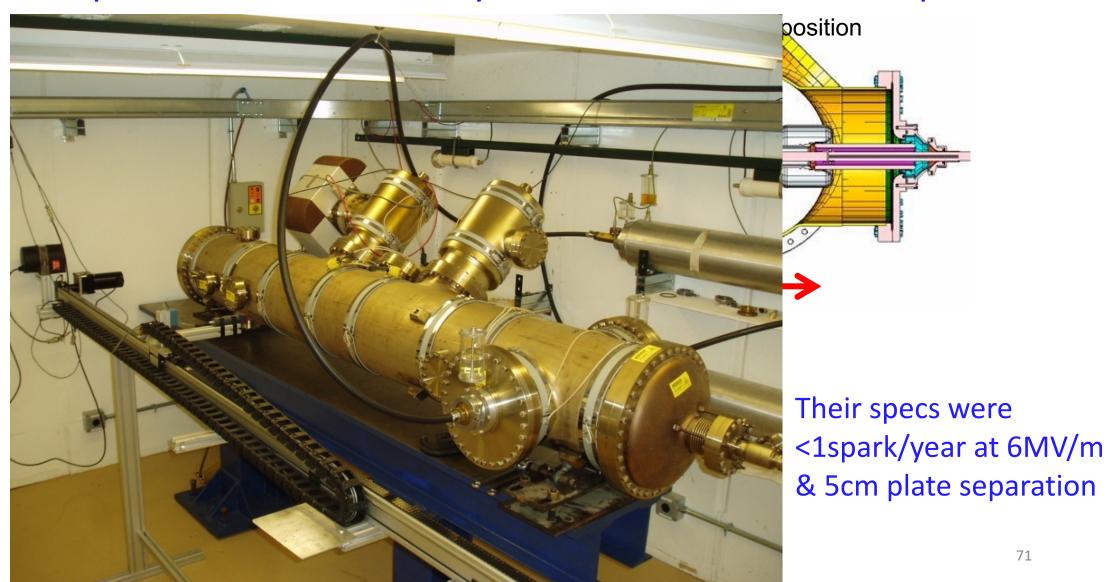

Fig. 4. Angle-averaged effective analyzing power. Curves show our fits. Points are the data included in the fits. Errors are statistical only

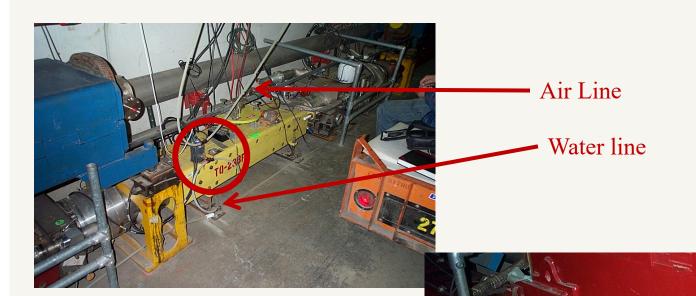
Fig.4. The angle averaged effective analyzing power as a function of the proton kinetic energy. The magic momentum of 0.7GeV/c corresponds to 232MeV.

E-field plate modules: The (24) FNAL Tevatron ES-separators ran for years with harder specs

E-field plate modules: The (24) FNAL Tevatron ES-separators ran for years with harder specs

Large Scale Electrodes

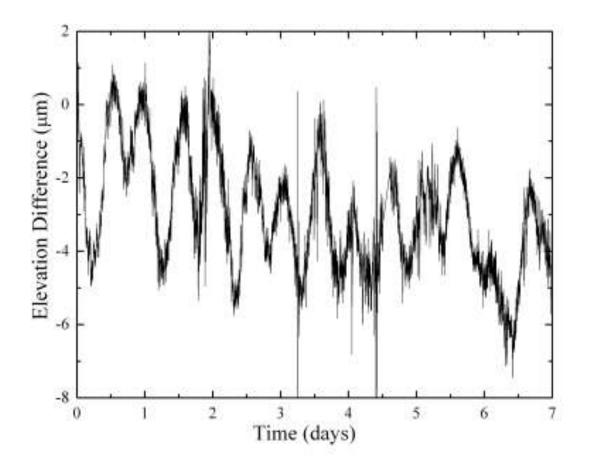
Parameter	Tevatron pbar-p	BNL K-pi	pEDM	
	Separators	Separators	(low risk)	
Length	2.6m	4.5m	12.5m	
Gap	5cm	10cm	4cm	
Height	0.2m	0.4m	0.2m	
Number	24	2	48	
Max. HV	±(150-180)KV	±200KV	±90KV	


Ring planarity critical to control geometrical phase errors

• The beam planarity requirement: <0.1mm, within existing technology

Clock-wise (CW) and counter-clock-wise (CCW) beam storage split to
 <0.01mm. SQUID-based BPMs (S-BPM) resolution: 10nm/sqrt(Hz)!

Tevatron Sensors on Quad



In the circle is a water level pot on a Tevatron quadrupole

HLS measurements at Fermilab

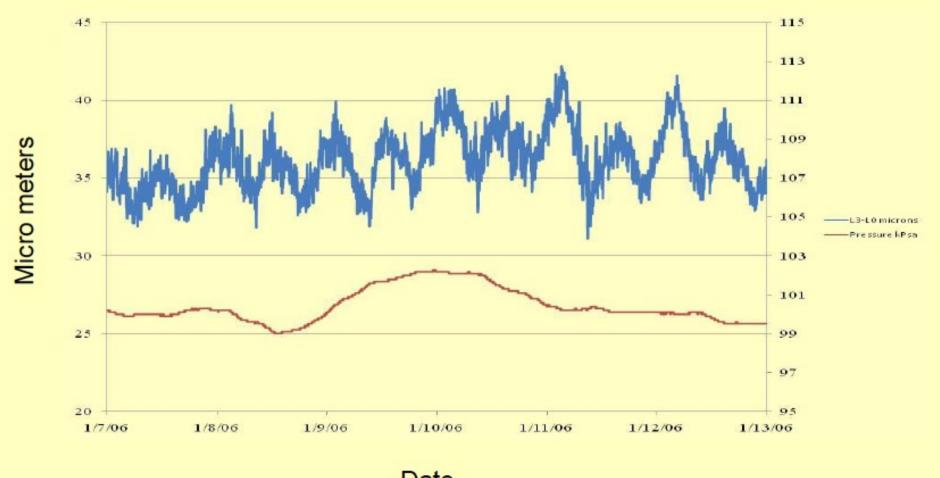


Fig.35. HLS probe on Tevatron accelerator focusing magnet.

MINOS Tidal Data

Difference in two sensors 90 meters apart

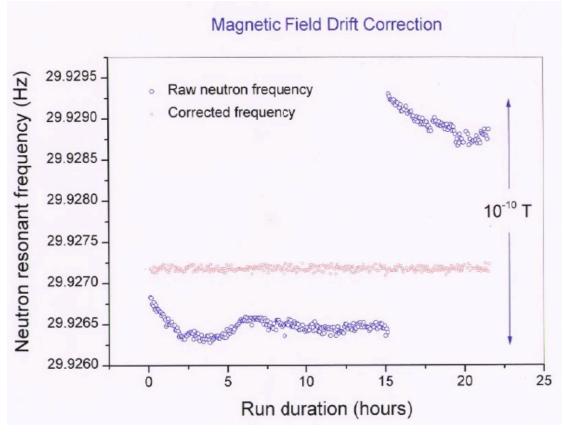
Date

JT Volk Fermilab Dec 2008

Physics strength comparison (Marciano)

System	Current limit [e·cm]	Future goal	Neutron equivalent		
Neutron	<1.6 × 10 ⁻²⁶	~10-28	10-28		
¹⁹⁹ Hg atom	<7 × 10 ⁻³⁰	<10-30	10-26		
¹²⁹ Xe atom	<6 × 10 ⁻²⁷	~10 ⁻²⁹ -10 ⁻³¹	10-25-10-27		
Deuteron nucleus		~10-29	3 × 10 ⁻²⁹ - ← 5 × 10 ⁻³¹ ←	From theta-QCD From SUSY-like CPV	
Proton nucleus	<2 × 10 ⁻²⁵	~10-29	10-29	77	

³He Co-magnetometer


If $nEDM = 10^{-26} e \cdot cm$,

 $10 \text{ kV/cm} \rightarrow 0.1 \mu\text{Hz shift}$

 \cong B field of 2 × 10 ⁻¹⁵ T.

Co-magnetometer:

Uniformly samples the B Field faster than the relaxation time.

Data: ILL nEDM experiment with ¹⁹⁹Hg co-magnetometer

EDM of 199 Hg < 10^{-28} e-cm (measured); atomic EDM \sim $Z^2 \rightarrow {}^3$ He EDM << 10^{-30} e-cm

Under gravity, the center of mass of He-3 is higher than UCN by $\Delta h \approx 0.13$ cm, sets $\Delta B = 30$ pGauss (1 nA of leakage current). $\Delta B/B=10^{-3}$.