Status of the puzzles of g-2

Thomas Teubner

- Introduction & (not always so) recent history
- Main changes in the a_{μ}^{SM} prediction, WP25
 - Data and data-driven dispersive HVP evaluations
 - vs Lattice QCD+QED
- Current & future efforts, pathways to solving the puzzles
- Outlook

Introduction: it all started with the electron...

- 1947: small deviations from predictions in hydrogen and deuterium hyperfine structure; Kusch & Foley propose explanation with $g = 2.00229 \pm 0.00008$
- 1948: Schwinger calculates the famous radiative correction:

$$g$$
 = 2 (1+a), with the anomaly
$$a = \frac{g-2}{2} = \frac{\alpha}{2\pi} \approx 0.001161$$

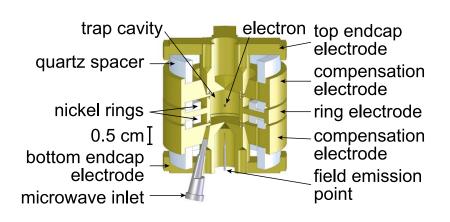
This explained the discrepancy and was a crucial step in the development of perturbative QFT and QED

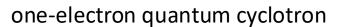
``If you can't join 'em, beat 'em"

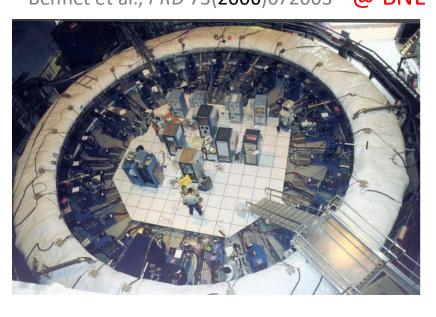
In terms of an effective Lagrangian, the anomaly is from the Pauli term:

$$\delta \mathcal{L}_{\text{eff}}^{\text{amm}} = -\frac{Qe}{4m} \, a \, \bar{\psi}_L \sigma^{\mu\nu} \psi_R F_{\mu\nu} + (L \leftrightarrow R)$$

Note: This is a dimension 5 operator and NOT part of the fundamental (QED) Lagrangian, but occurs through radiative corrections and is **calculable in** (Standard Model) **theory**:


$$a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm weak} + a_{\mu}^{\rm hadronic}$$


Short detour: a_e vs. a_u and why we want to study the muon


 $a_e = 1 159 652 180.73 (0.28) 10^{-12} [0.24ppb]$

Hanneke et al., *PRL* 100(2008)120801 @ Harvard

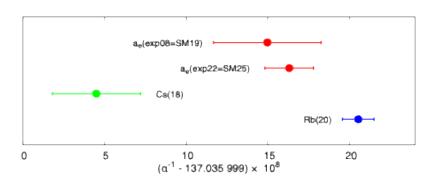
 a_{μ} = 116 592 089(63) 10⁻¹¹ [0.54ppm] Bennet et al., *PRD* 73(2006)072003 @ BNL

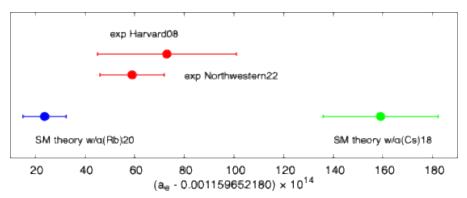
- a_e^{EXP} more than 2000 times more precise than a_μ^{EXP} , but for e^- loop contributions come from very small photon virtualities, whereas muon `tests' higher scales
- dimensional analysis: sensitivity to NP (at high scale $\Lambda_{
 m NP}$): $a_\ell^{
 m NP}\sim {\cal C}\,m_\ell^2/\Lambda_{
 m NP}^2$
- ightarrow μ wins by $m_{\mu}^2/m_e^2\sim 43000$ for NP, a_e 'determines' α , tests QED & low scales [Note: τ too short-lived for storage-rings, hard to get precision at colliders]

a_e current status (exp @ Northwestern): *PRL* 130 (2023) 7, 071801

Measurement of the Electron Magnetic Moment

[arXiv:2209.13084]


X. Fan,^{1, 2, *} T. G. Myers,² B. A. D. Sukra,² and G. Gabrielse^{2, †}


¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA (Dated: September 28, 2022)

The electron magnetic moment in Bohr magnetons, $-\mu/\mu_B = 1.001\,159\,652\,180\,59\,(13)\,[0.13\,\text{ppt}]$, is consistent with a 2008 measurement and is 2.2 times more precise. The most precisely measured property of an elementary particle agrees with the most precise prediction of the Standard Model (SM) to 1 part in 10^{12} , the most precise confrontation of all theory and experiment. The SM test will improve further when discrepant measurements of the fine structure constant α are resolved, since the prediction is a function of α . The magnetic moment measurement and SM theory together predict $\alpha^{-1} = 137.035\,999\,166\,(15)\,[0.11\,\text{ppb}]$

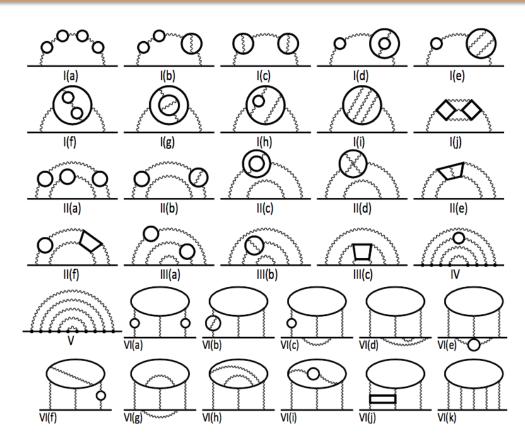
SM theory prediction depends strongly on α , but measurements with Cs and Rb disagree by 5.4 σ :

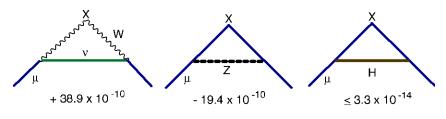
Figures from Muon g-2 Theory Initiative **WP25** [Phys. Rept. 1143 (2025) 1-158]

 \leftarrow Translation to derived value of α

auQED & auweak: a triumph for perturbative QFT

QED: Kinoshita et al. + many tests


- g-2 @ 1, 2, 3, 4 & 5 loops
- Subset of 12672 5-loop diagrams:
- code-generating code, incl renormalisation
- multi-dim. numerical integrations
- including now consolidation of numerical
 5-loop (analytical: Stefano Laporta's talk)
- latest update (WP25):


$$a_{\mu}^{QED}$$
 = 116 584 718.8 (2) × 10⁻¹¹ \checkmark

Weak: (several groups agree)

- done to 2-loop order, 1650 diagrams
- the first full 2-loop weak calculation
- latest update (WP25):

$$a_u^{\text{weak}} = 154.4 (4) \times 10^{-11} \checkmark$$

SM weak 1-loop diagrams

auhadronic: non-perturbative, the limiting factor of the SM prediction

- Q: What's in the hadronic (Vacuum Polarisation & Light-by-Light scattering) blobs?
 - A: Anything `hadronic' the virtual photons couple to, i.e. quarks + gluons + photons
 - But: low q² photons dominate loop integral(s)

 → cannot calculate blobs with perturbation theory
- Two very different (model independent) strategies:
 - 1. use wealth of hadronic data, `data-driven dispersive methods':
 - data combination from many experiments, radiative corrections required
 - 2. simulate the strong interaction (+photons) w. discretised Euclidean space-time, 'lattice QCD':
 - finite size, finite lattice spacing, artifacts from lattice actions, QCD + QED needed
 - numerical Monte Carlo methods require large computer resources

Muon g-2 Theory Initiative est. 2017

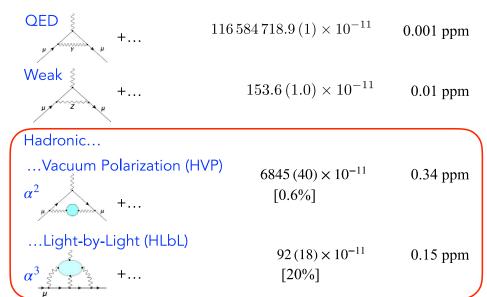
- Organised 13 int. workshops in 2017-2024
- White Paper 2020 posted 10 June 2020 (132 authors, from 82 institutions, in 21 countries)

"The anomalous magnetic moment of the muon in the Standard Model" [Phys. Rept. 887 (2020) 1-166]

• White Paper 2025 "...: an update" [Phys. Rept. 1143 (2025) 1-158]

Group photo from the Orsay workshop in September 2025

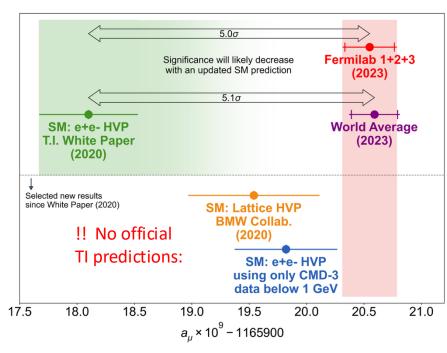
Mission: "... map out strategies for obtaining the best theoretical predictions for these hadronic corrections in advance of the experimental result."



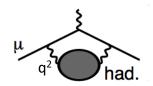
SM (WP20) vs. Experiment, after FNAL run2+3 results

$$a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{hadronic}} + a_{\mu}^{\text{NP?}}$$

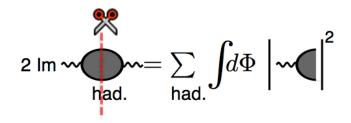
White Paper [T. Aoyama et al., Phys. Rept. 887 (2020) 1-166]


0.37 ppm

SM uncertainty dominated by hadronic contributions, now with δ HVP > δ HLbL


Measurement of the Positive Muon Anomalous Magnetic Moment to **0.46 ppm** [*Phys. Rev. Lett.* 126 (**2021**) 14, 141801]

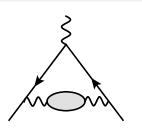
... to 0.20 ppm [PRL 131 (2023) 16, 161802]



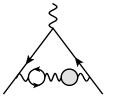
... seemed close to a NP discovery?!

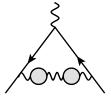
auHVP: Basic principles of dispersive data-driven method

$$extbf{ www}=\int rac{ds}{\pi(s-q^2)} \operatorname{Im} extbf{ www} extbf{ had}.$$

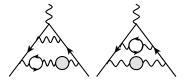

$$a_{\mu}^{\rm had,LO} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\rm th}}^{\infty} ds \ \frac{1}{s} \hat{K}(s) \sigma_{\rm had}(s)$$

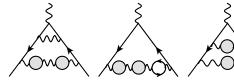
One-loop diagram with hadronic blob = integral over q² of virtual photon, 1 HVP insertion


Causality → analyticity → dispersion integral: obtain HVP from its imaginary part only


- Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \Longrightarrow Lower energies more important $\Longrightarrow \pi^+\pi^-$ channel: 73% of total $a_\mu^{\mathrm{had,LO}}$
- Total hadronic cross section σ_{had} from ~ 250 data sets for $e^+e^- \rightarrow hadrons$ in ~ 50 final states
- Uncertainty of a_u^{HVP} prediction from statistical & systematic uncertainties of input data
- pQCD only at large s, **no modelling** of $\sigma_{had}(s)$, direct data integration
- · The method is solid beyond doubt

au HVP: Higher orders & power counting; WP20 values in 10-11





- All hadronic blobs also contain **photons**, i.e. real + virtual corrections in $\sigma_{had}(s)$
- LO: 6931(40)
- NLO: -98.3(7)

from three classes of graphs: -207.7(7) + 105.9(4) + 3.4(1) [KNT19] (photonic, extra e-loop, 2 had-loops)

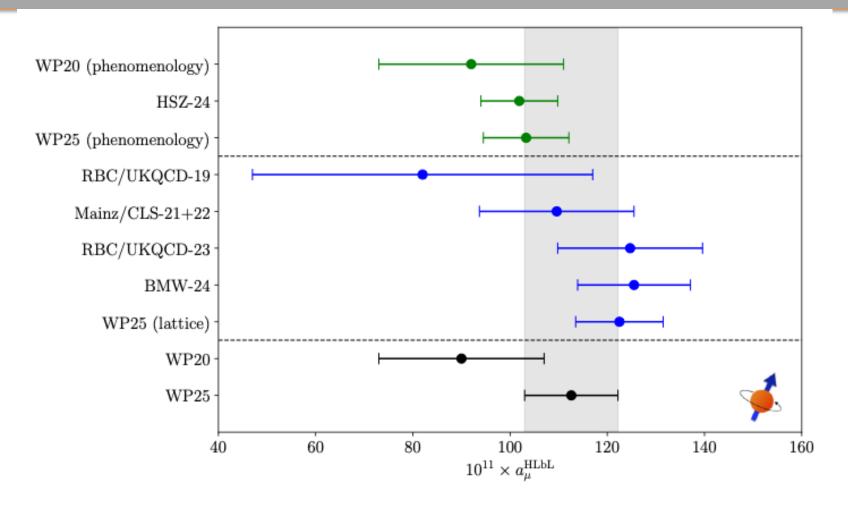
NNLO: 12.4(1) [Kurz et al, PLB 734(2014)144, see also F Jegerlehner] from five classes of graphs:

8.0 - 4.1 + 9.1 - 0.6 + 0.005

- ⇒ good convergence,
 iterations of hadronic blobs _very_ small
- `double-bubbles' very small

au HLbL: Hadronic Light-by-Light: **Dispersive** approach

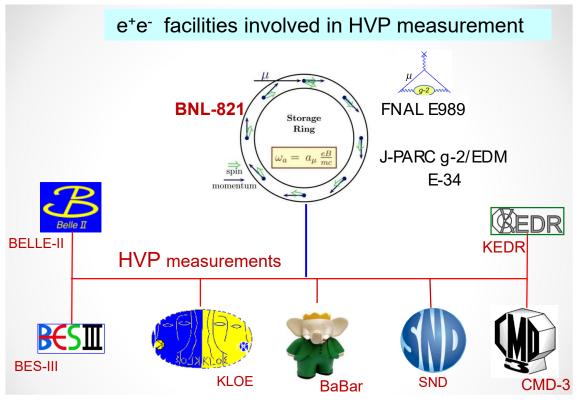
For HVP)
$$2 \text{ Im} \sim \sum_{\text{had.}} \int d\Phi \left| \sim \bullet \right|^2$$
) $\text{Im}_{\text{had}}(s) = \frac{1}{4 \text{?} e^{-\beta}} \sigma_{\text{had}}(s)$


For HLbL)
$$\hat{\mathbb{I}}_{\mu \otimes \mathbb{Z} \sigma} = \hat{\mathbb{I}}_{\mu \otimes \mathbb{Z} \sigma}^{\text{pole}} + \hat{\mathbb{I}}_{\mu \otimes \mathbb{Z} \sigma}^{\text{box}} + \hat{\mathbb{I}}_{\mu \otimes \mathbb{Z} \sigma}^{\text{box}} + \dots$$

) Dominated by pole (pseudoscalar exchange) contributions

$$\hat{\Pi}_{\mu}^{\text{pole}} = \frac{1}{\sqrt{1-\frac{1}{2}}} = \frac{1}{\sqrt{$$

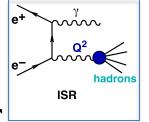
-) Sum all possible diagrams to get a_{μ}^{HLbL}
- Dispersive analyses have matured in recent years and provide precise results without relying on (and not contradicting earlier) hadronic model calculations

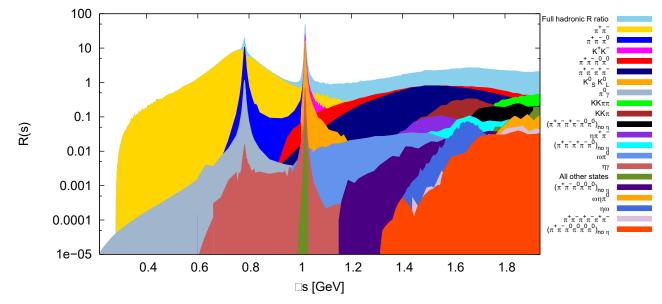

au HLbL: WP25 Summary of Hadronic Light-by-Light contributions

- New, precise data-driven dispersive (`phenomenology') & lattice results are consistent
- Their combination has improved the WP25 prediction of a_u^{HLbL} to a precision of 8.5% $\sqrt{}$

HVP: Recent (of >30 years) experiments providing input $\sigma_{had}(s)$ data

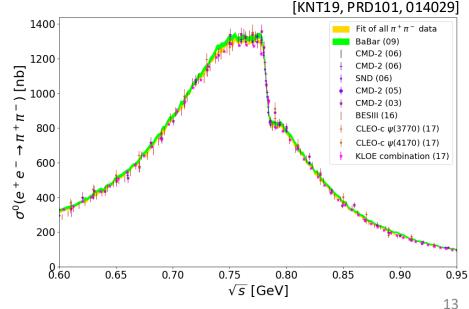
S. Serednyakov (for SND) @HVP KEK workshop



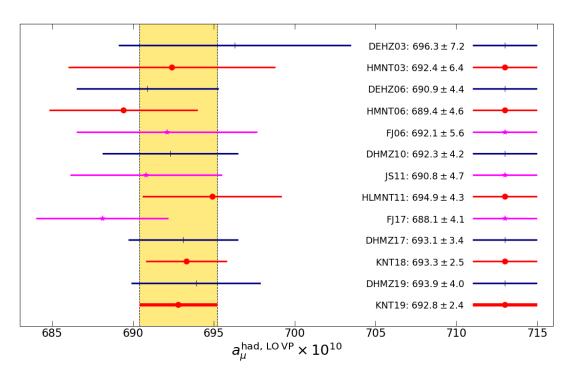

`Radiative Return' (Initial State Radiation scan at fixed cm energy) <

- ➤ RadioMonteCarLow Working Group report: *Eur. Phys. J.* C66 (2010) 585-686
- ► full NLO radiative corrections in ISR MC *Phokhara*: Campanario et al, PRD 100(2019)7,076004

HVP disp: Landscape of $\sigma_{had}(s)$ data. Most important recombined



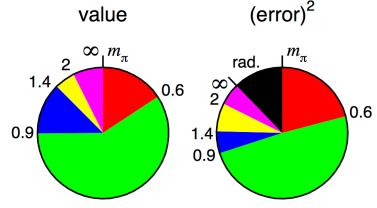
[KNT18, PRD97, 114025]


- hadronic channels for energies below 2 GeV
- dominance of 2π

$\pi^+\pi^-$:

- Combination of >30 data sets, >1000 points, contributing >70% of total HVP
- Precise measurements from 6 independent experiments with different systematics and different radiative corrections
- Dominated by Radiative Return, tensions could be accommodated by error inflation
- Until the CMD-3 result in 2023 (not in here →)

auHVP: > 20 years of data based predictions, `pies'

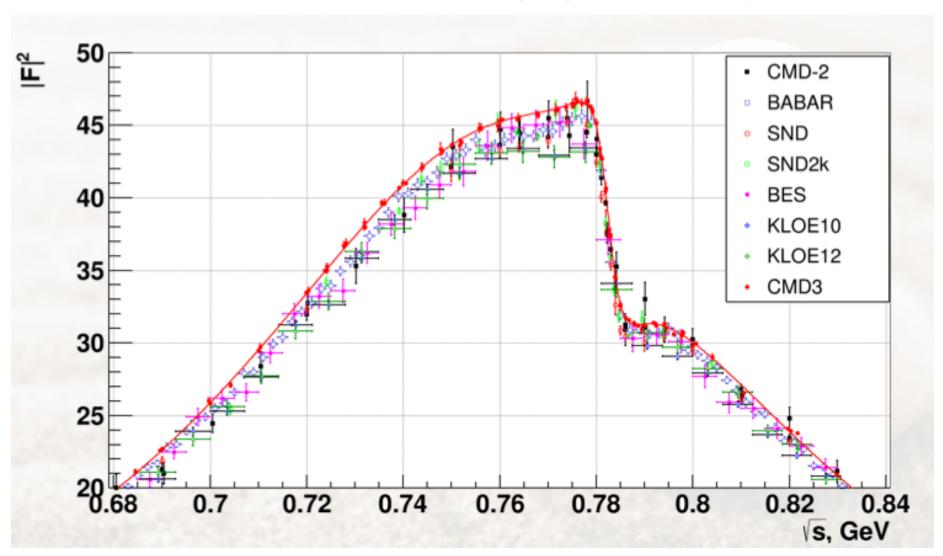


- Stability and consolidation over two decades thanks to more and better data input and improved compilation procedures
- Compare with merged DHMZ & KNT value in 2020 TI WP:

$$a_{\mu}^{had, LO VP}(WP20) = 693.1(4.0) \times 10^{-10}$$

Pie diagrams for KNT compilation:

- error dominated by the two pion channel
- significant contribution to error from additional uncertainty from radiative corrections

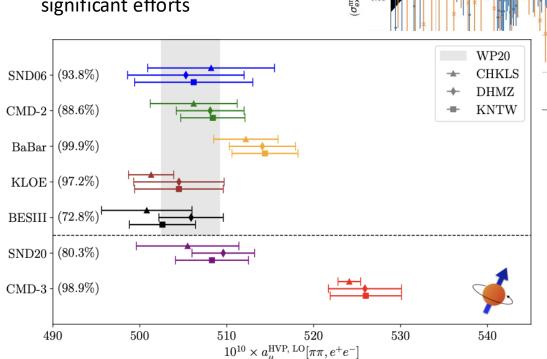

From 2023: Is all this invalidated by the CMD-3 data?

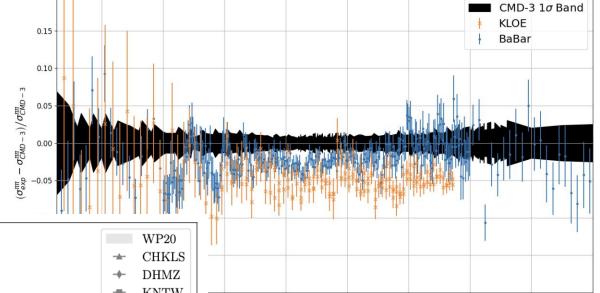
CMD-3 $\pi^+\pi^-$ data vs. other experiments

Figure from Fedor Ignatov's TI talk 27.3.2023

PRD 109(2024)11,112002 PRL 132(2024)23,231903

Theory Initiative: Sep. 2023 workshop at Bern

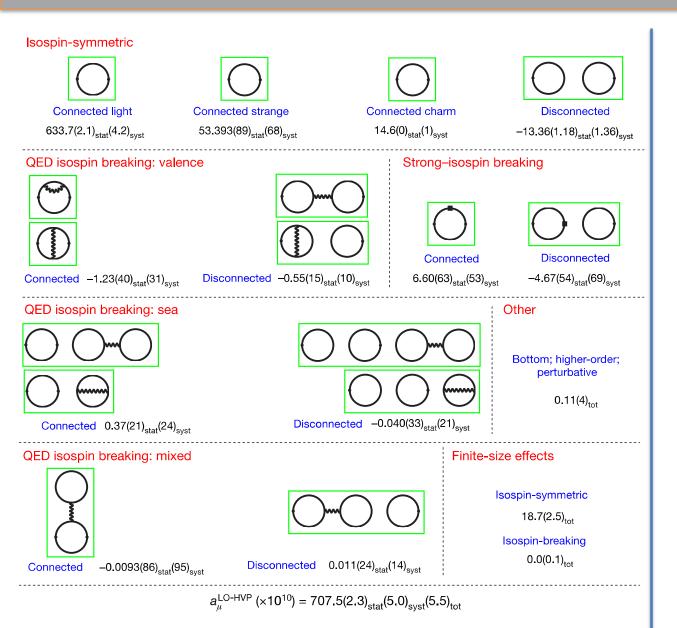

Michel Davier's summary of the `49 Questions to CMD-3' (all answered by Fedor Ignatov):


Conclusions

- Difficult exercise: sophisticated analyses are not easy to penetrate without access to the data
- However we got documented answers on detailed questions covering the important aspects of the analysis
- It is fair to say that no major issue significantly impacting the results has been identified
- The strength of the analysis lies in (1) the large statistics accumulated giving the possibility to perform systematic tests with high precision, (2) improved performance of the CMD-3 detector, and (3) the fact that two independent methods were used for channel separation
- Still several points remained unclear to us and /or not enough convincing with the information available
- Possible effects on the results from these minor issues need to be quantified with respect to the claimed accuracy
- Need guidance from CMD-2/3 on how to handle their data

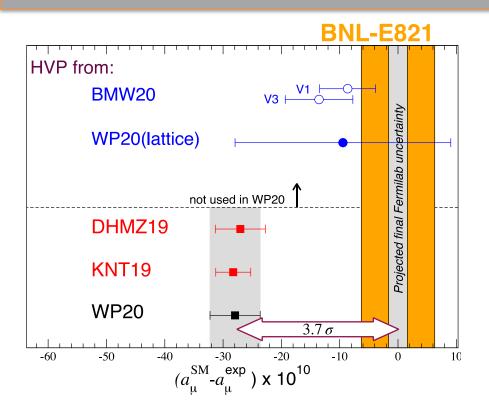
a_{μ}^{HVP} : $\pi^{+}\pi^{-}$ data tensions: KLOE vs. Babar vs. CMD-3 puzzle

- CMD-3 spectrum much higher than all other previous data
- tensions with BaBar (~2.5σ) and KLOE (~5σ)
- no errors found despite significant efforts

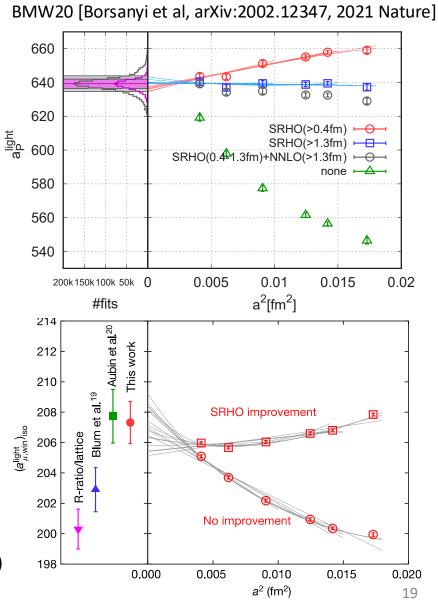

√s (GeV)

0.6

Theory Initiative's **WP25**:


- detailed discussion of data, combination methods and theory inputs, but
- NO data-driven au HVP `average'

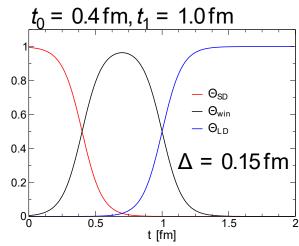
auHVP: Lattice result from BMW [Borsanyi et al., Nature 2021]


- First full lattice prediction with errors matching the datadriven approach
- Current-current correlators, summed over all distances and integrated over time (TMR)
- Using a L~6fm lattice (11fm for finite size corrections)
- Physical quark masses
- Strong + QED isospin breaking corrections

au HVP: Tension between data-driven & BMW. Systematics

BMW20: large systematics from **continuum limit,** large taste-breaking corrections (`SRHO')

- upper right panel: limit and uncertainty estimation
- lower right panel: limit for central `window' compared to other lattice and data-driven results (3.7σ tension)


a_u HVP: Window method for more detailed comparison

$$a_{\mu}^{\mathsf{HVP,LO}} = \frac{\mathbf{\tilde{w}}_{\mathcal{A}} + \mathbf{\tilde{w}}_{\mathcal{A}} - \mathbf{\tilde{w}}_{\mathcal{A}}}{\mathbf{\tilde{w}}_{\mathcal{A}}} dt \, \tilde{w}(t) \, C(t)$$

Use windows in Euclidean time to consider the different time

regions separately.

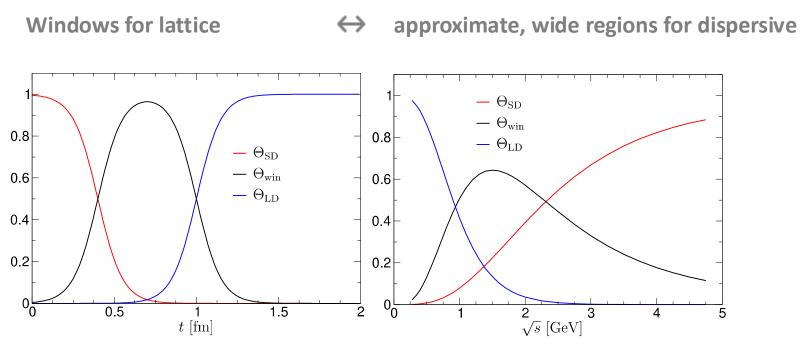
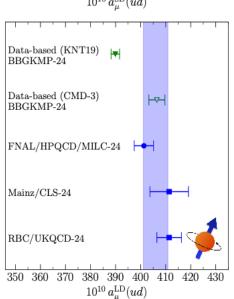
Short Distance (SD) $t: 0 \rightarrow t_0$ Intermediate (W) $t: t_0 \rightarrow t_1$ Long Distance (LD) $t: t_1 \rightarrow \infty$

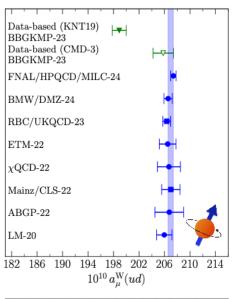
 Compute each window separately (in continuum, infinite volume limits,...) and combine

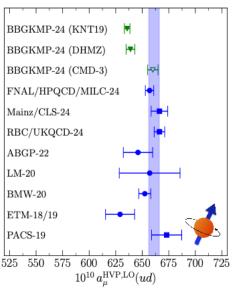
$$a_{\mu} = a_{\mu}^{SD} + a_{\mu}^{W} + a_{\mu}^{LD}$$

a_uHVP: Window method for more detailed comparison

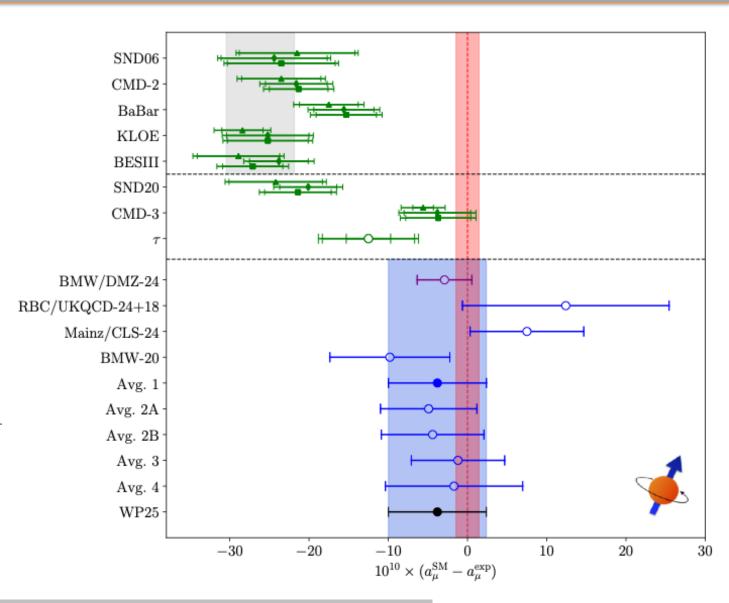
Correspondence to kernels for comparison with (time-like) dispersive approach:


Fig.: G. Colangelo, PWA12/ATHOS7 2021

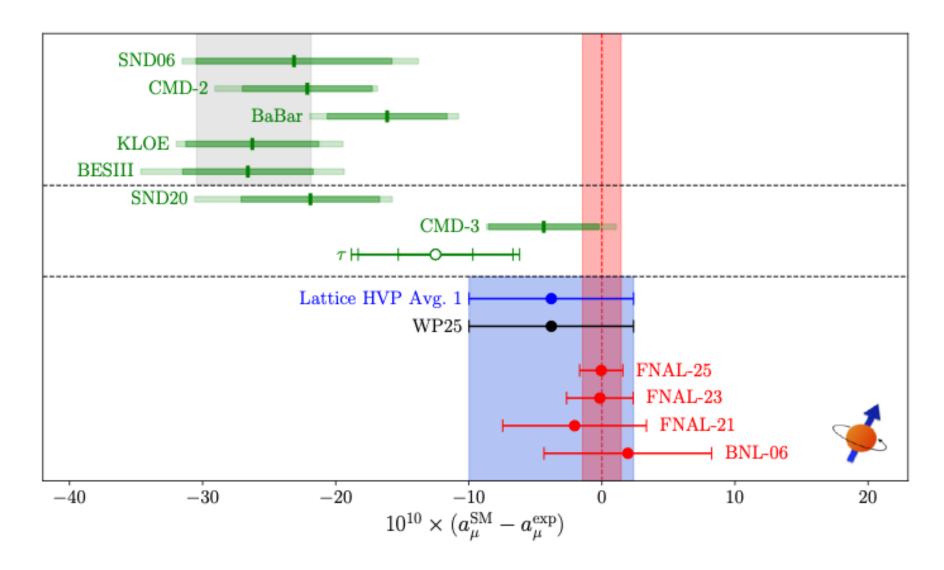

a_uHVP: Window method for detailed comparisons (WP25)

- Comparison of the leading connected ud quark contributions to a_μ^{HVP, LO}, in the three windows and for the total contribution, between data-driven and lattice results
- Discrepancies are clearly
 established, unless CMD-3 is used
 as input for the data-driven
 evaluation



a_u^{HVP}: Summary plot for HVP comparison from WP25

- Comparison of predictions for the full a_µHVP, LO from data-driven dispersive (including tau-based*) and lattice approaches
- The red band represents the current experimental uncertainty from the latest FNAL results
- Agreement between different averages for the lattice-based predictions
- Th error bands :-!

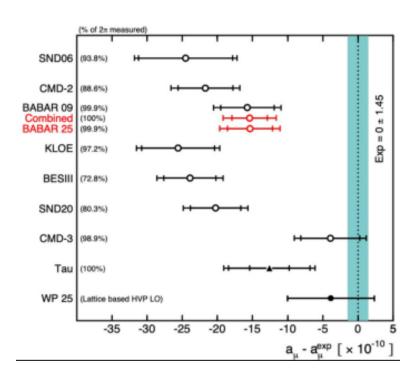

^{*} See Martin Hoferichter's talk on Thursday for latest news on tau

au: Final WP25 summary table

Contribution	WP25	WP20
HVP LO (lattice)	7132(61)	7116(184)
HVP LO (e^+e^-, τ)	Table 5	6931(40)°
HVP NLO (e^+e^-)	-99.6(1.3)	-98.3(7)
HVP NNLO (e+e-)	12.4(1)	12.4(1)
HLbL (phenomenology)	103.3(8.8)	92(19)
HLbL NLO (phenomenology)	2.6(6)	2(1)
HLbL (lattice)	122.5(9.0)	82(35)
HLbL (phenomenology + lattice)	112.6(9.6)	90(17)
QED	116 584 718.8(2)	116 584 718.931(104)
EW	154.4(4)	153.6(1.0)
HVP (LO + NLO + NNLO)	7045(61)	6845(40)
HLbL (phenomenology + lattice + NLO)	115.5(9.9)	92(18)
Total SM Value	116 592 033(62)	116 591 810(43)

Table 33: Comparison of the key results from this work (WP25), as given in Table 1, to the corresponding numbers from WP20 [1] (in units of 10^{-11}). Note that the "HLbL (lattice)" result from WP20 has been adapted to include the charm-loop contribution. The entry "HVP (LO + NLO + NNLO)" derives from HVP LO (lattice) [WP25] and HVP LO (e^+e^-) [WP20], respectively. The asterisk indicates that the LO HVP value from WP20 was based on e^+e^- data only, while in Table 5 we also include the current status for τ -based evaluations.

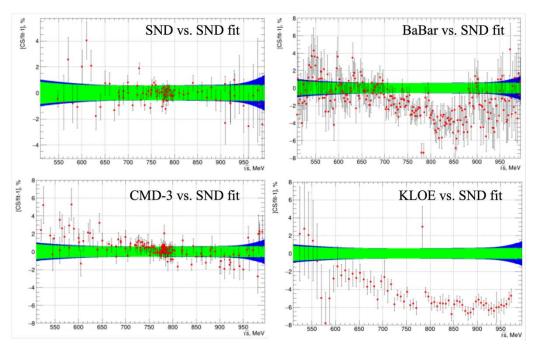
a_u: Final WP25 summary plot



For WP25, the pendulum has swung. Will it stay? My opinion: too early to tell!

a_{μ}^{HVP} : latest news for $\pi^{+}\pi^{-}$

BaBar:


- Preliminary new analysis based on new method
- Reduced systematics for 0.5-1.4 GeV region
- Excellent agreement with previous analysis

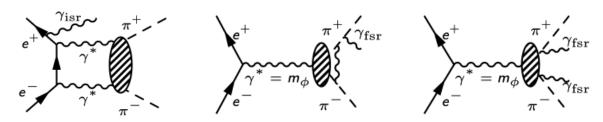
A. Pinto, talk at the TI plenary 2025

SND:

- Preliminary new, unblinded analysis leads to cross section significantly higher than previously
- Results more in line with CMD-3

A. Kupich, talk at the TI plenary 2025

Pathways to solving the puzzles


- Situation complicated due to emerged puzzles in data, mainly (but not only) in the leading two pion channel
- Lattice predictions may further consolidate and improve, but full agreement between the methods and higher accuracy are needed to match the experimental precision, and to have full confidence in conclusions w.r.t. BSM
- More & more precise data are needed and are already coming from: BaBar, CMD-3, SND, BES III, Belle II, and KLOE
- For this, **improved Radiative Corrections & Monte Carlo generators** are needed, especially for Radiative Return
- To avoid any possible bias, **blinded analyses** are now the standard, for both experiments (g-2 and σ_{had}) and lattice, also for the next KNTW compilation
- The third way: **MUonE** scattering experiment at CERN (see Wednesday afternoon talks by Giovanni Cantatore and Fulvio Piccinini)

KLOE 2\pi, **RC** & **MC** activities

- Liverpool⁺ effort to analyse the **full** KLOE 2π statistics (integrated $L \sim 1.7$ fb⁻¹)
 - Graziano, with his Leverhulme grant, has brought together a team of exp+Th+MC in Liverpool (+ external collaborators), and the work is ongoing

- Goal: sub-percent accuracy for $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ from KLOE, i.e. aim at reduction of uncertainty in g-2 to $\Delta a_{\mu}^{KLOE\ 2\pi} \lesssim 0.4\%$
- This requires significant involvement from theoretical groups
 - improvement of MC(s) to better describe ISR and FSR (Phokhara,...)
 - main aim is NNLO⁺ (+resummation) for ISR and improvement/consistent FF treatment for FSR, e.g.

- \triangleright other MC groups are also concentrating on $e^+e^- \rightarrow \pi^+\pi^-$, $\mu^+\mu^-$, e^+e^- at higher order
- International Working Group RadioMonteCarLow 2 has already published their phase 1

RadioMonteCarLow 2

SciPost Phys. Comm. Rep. 9 (2025)

Radiative corrections and Monte Carlo tools for low-energy hadronic cross sections in e^+e^- collisions

```
Riccardo Alíberti<sup>1</sup>, Paolo Beltrame<sup>2</sup>, Ettore Budassi<sup>3,4</sup>,
Carlo M. Carloni Calame<sup>4</sup>, Gilberto Colangelo<sup>5</sup>, Lorenzo Cotrozzi<sup>2</sup>,
Achim Denig<sup>1</sup>, Anna Driutti<sup>6,7</sup>, Tim Engel<sup>8</sup>, Lois Flower<sup>2,9</sup>,
Andrea Gurgone<sup>3,6,7</sup>, Martin Hoferichter<sup>5</sup>, Fedor Ignatov<sup>2</sup>,
Sophie Kollatzsch<sup>10,11</sup>, Bastian Kubis<sup>12</sup>, Andrzej Kupść<sup>13,14*</sup>,
Fabian Lange<sup>10,11</sup>, Alberto Lusiani<sup>7,15</sup>, Stefan E. Müller<sup>16</sup>, Jérémy Paltrinieri<sup>2</sup>,
Pau Petit Rosàs<sup>2</sup>, Fulvio Piccinini<sup>4</sup>, Alan Price<sup>17</sup>, Lorenzo Punzi<sup>7,15</sup>,
Marco Rocco<sup>10,18</sup>, Olga Shekhovtsova<sup>19,20</sup>, Andrzej Siódmok<sup>17</sup>,
Adrian Signer<sup>10,11*</sup>, Giovanni Stagnitto<sup>21</sup>, Peter Stoffer<sup>10,11</sup>,
Thomas Teubner<sup>2</sup>, William J. Torres Bobadilla<sup>2</sup>,
Francesco P. Ucci<sup>3,4</sup>, Yannick Ulrich<sup>2,5*</sup> and Graziano Venanzoni<sup>2,7*</sup>
(RadioMonteCarLow 2 working group)
```

Abstract

We present the results of Phase I of an ongoing review of Monte Carlo tools relevant for low-energy hadronic cross sections. This includes a detailed comparison of Monte Carlo codes for electron-positron scattering into a muon pair, pion pair, and electron pair, for scan and radiative-return experiments. After discussing the various approaches that are used and effects that are included, we show differential cross sections obtained with AfkQED, Babayaga@NLO, KKMC, MCGPJ, McMule, Phokhara, and Sherpa, for scenarios that are inspired by experiments providing input for the dispersive evaluation of the hadronic vacuum polarisation.

Outlook / Conclusions

- The still unresolved **g-2 puzzles** have triggered a lot of experimental & theory activities, including experiments, the Muon g-2 Theory Initiative & lattice
- Progress in lattice methods and simulations has been impressive
- The **final FNAL result** will define the field for years to come
- ... but to fully exploit it, much more effort will be needed to improve the SM prediction
- There is a hard but clear pathway for this, from theory, MC, via experimental analyses and completely new approaches including MUonE
- In the longer future, J-PARC can provide a completely independent measurement at low muon momentum
- Together with other lepton moment measurements (including the muon EDM) and lepton flavour violation searches, g-2 continues to be a testbed for new methods, and new physics.
- My view: the puzzles are very much `WIP', and g-2 is not `RIP'