Status of the HVP contribution to the muon g-2 from lattice

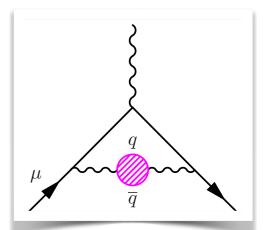
IV Workshop on Muon Precision Physics

Liverpool

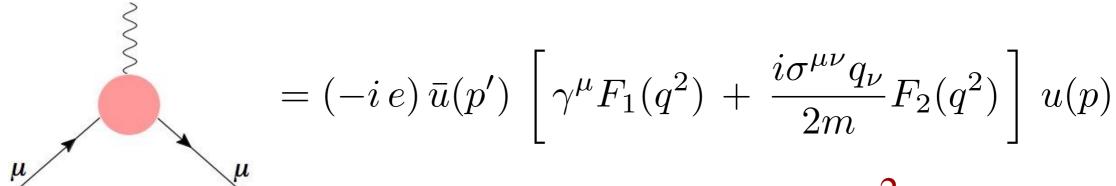
12th November 2025

OUTLINE

- Introduction
- HVP from the lattice & window obs.
- The BMW/DMZ-24 calculation



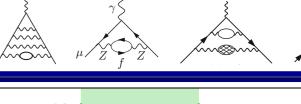
Introduction

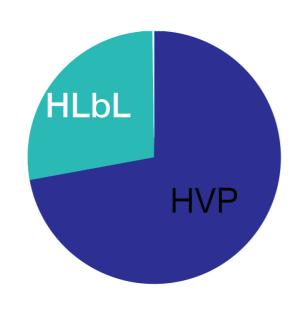


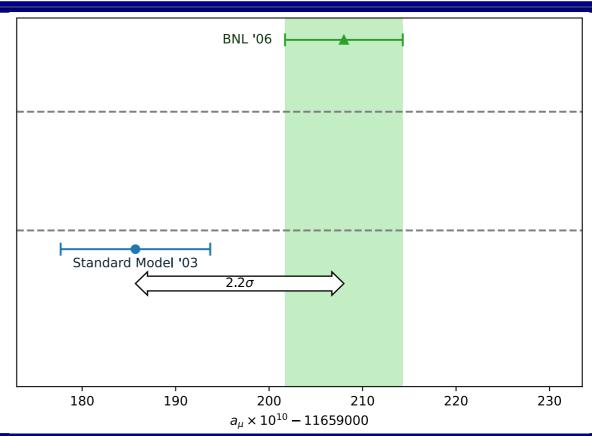
muon anomalous magnetic moment: $a_{\mu} \equiv \frac{g_{\mu} - 2}{2} = F_2(0)$

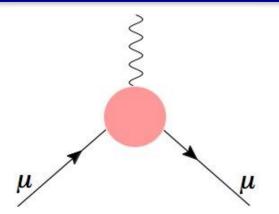
$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2} = F_2(0)$$

- is generated by quantum loops;
- receives contribution from QED, EW and QCD effects in the SM;
- is a sensitive probe of new physics







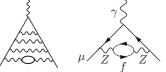


$$= (-ie) \bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2) \right] u(p)$$

muon anomalous magnetic moment: $a_{\mu} = \frac{g_{\mu} - 2}{2} = F_2(0)$

$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2} = F_2(0)$$

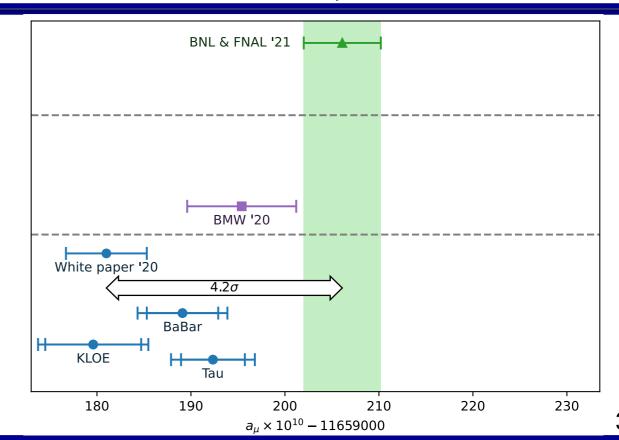
- is generated by quantum loops;
- receives contribution from QED, EW and QCD effects in the SM;
- is a sensitive probe of new physics

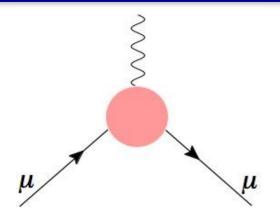


CIA				[1010]	
SIVI	contributions	to	a_{μ}	$ \times 10^{10} $	

5-loop QED	11 658 471.8931(104)
2-loop EW	15.36(10)
HVP LO	693.1(4.0)
HVP NLO	-9.83(7)
HVP NNLO	1.24(1)
HLbL	9.2(1.8)

Aoyama et al. [WP] 2020



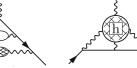


$$= (-ie) \bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2) \right] u(p)$$

muon anomalous magnetic moment: $a_{\mu} = \frac{g_{\mu} - 2}{2} = F_2(0)$

$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2} = F_2(0)$$

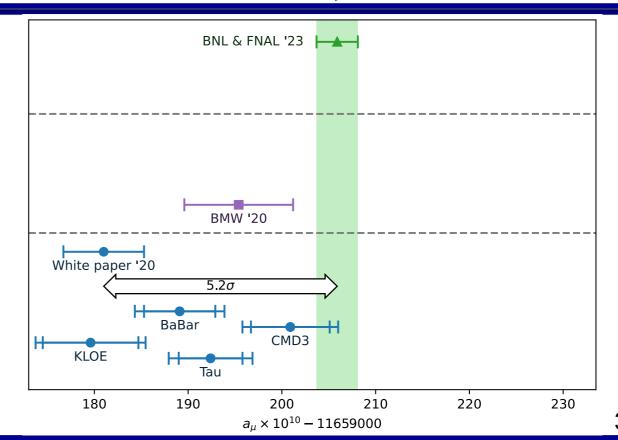
- is generated by quantum loops;
- receives contribution from QED, EW and QCD effects in the SM;
- is a sensitive probe of new physics

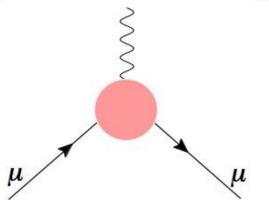


C N 4				r 1010	1
SIVI	contributions	to	a_{μ}	X 101°	l

5-loop QED	11 658 471.8931(104)
2-loop EW	15.36(10)
HVP LO	693.1(4.0)
HVP NLO	-9.83(7)
HVP NNLO	1.24(1)
HLbL	9.2(1.8)

Aoyama et al. [WP] 2020



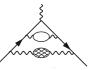


$$= (-ie) \bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2) \right] u(p)$$

muon anomalous magnetic moment:

$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2} = F_2(0)$$

- is generated by quantum loops;
- receives contribution from QED, EW and QCD effects in the SM;
- is a sensitive probe of new physics

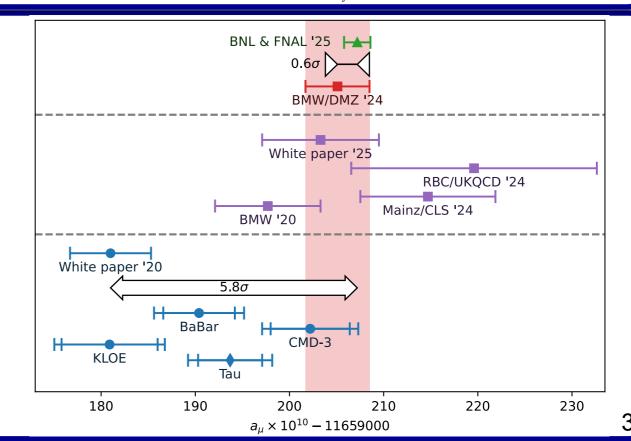




SM contributions to $a_{\mu}[\times 10^{10}]$

5-loop QED	11 658 471.88(2)
2-loop EW	15.44(4)
HVP LO	713.2(6.1)
HVP NLO	-9.96(13)
HVP NNLO	1.24(1)
HLbL	11.55(99)

Aliberti et al. [WP] 2025



Hadronic contributions

$$a_{\mu}^{\mathsf{exp}} - a_{\mu}^{\mathsf{QED}} - a_{\mu}^{\mathsf{EW}} = 719.8(1.5) \times 10^{-10} \stackrel{?}{=} a_{\mu}^{\mathsf{had}}$$

Clearly right order of magnitude:

$$a_{\mu}^{\text{had}} = O\left(\left(\frac{\alpha}{\pi}\right)^2 \left(\frac{m_{\mu}}{M_{\rho}}\right)^2\right) = O\left(10^{-7}\right)$$

(already Gourdin & de Rafael '69 found $a_{\mu}^{\text{had}} = 650(50) \times 10^{-10}$)

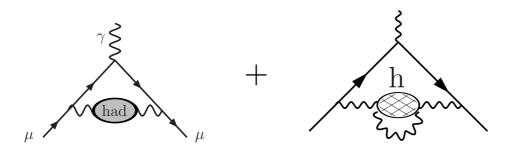
Huge challenge: theory of strong interaction between quarks and gluons, QCD, hugely nonlinear at energies relevant for a_{μ}

- → perturbative methods used for electromagnetic and weak interactions do not work
- → need nonperturbative approaches

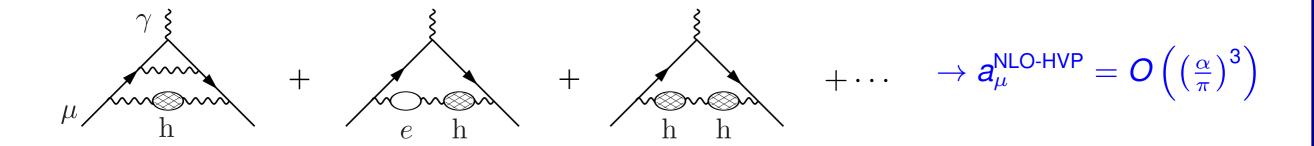
Write

$$a_{\mu}^{\mathsf{had}} = a_{\mu}^{\mathsf{LO-HVP}} + a_{\mu}^{\mathsf{HO-HVP}} + a_{\mu}^{\mathsf{HLbyL}} + O\left(\left(rac{lpha}{\pi}
ight)^4
ight)$$

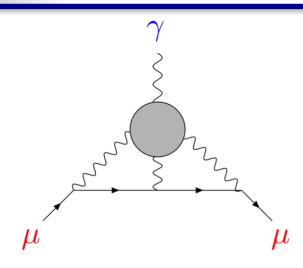
Hadronic contributions: diagrams



$$o extcolor{a}_{\mu}^{ extcolor{LO-HVP}} = extcolor{black}{O}\left(\left(rac{lpha}{\pi}
ight)^{2}
ight)$$



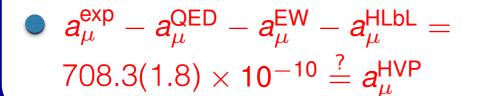
Hadronic light-by-light

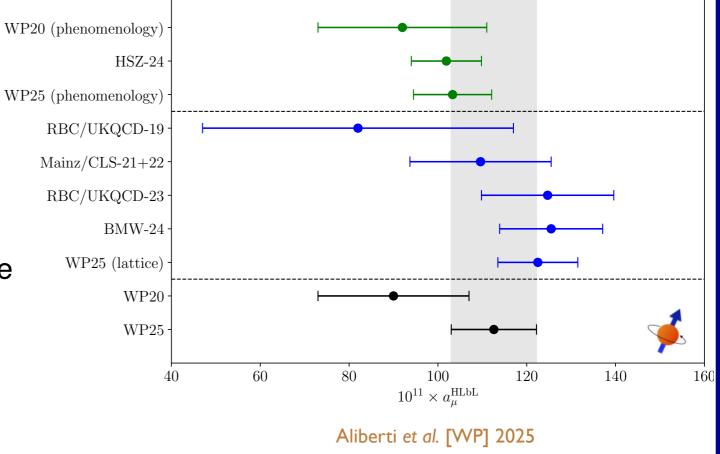


- HLbL much more complicated than HVP, but ultimate precision needed is $\simeq 10\%$ instead of $\simeq 0.2\%$
- For many years, only accessible to models of QCD w/difficult to estimate systematics (Prades et al '09): $a_{\mu}^{HLbL} = 10.5(2.6) \times 10^{-10}$
- Also, lattice QCD calculations were exploratory and incomplete
- Tremendous progress in past 5 years:
 - → Phenomenology: rigorous data driven approach [Colangelo, Hoferichter, Kubis,

Procura, Stoffer,...'15-'20]

- → Lattice: three solid lattice calculations
- All agree w/ older model results but error estimate much more solid and will improve
- Agreed upon average w/ NLO HLbL and conservative error estimates



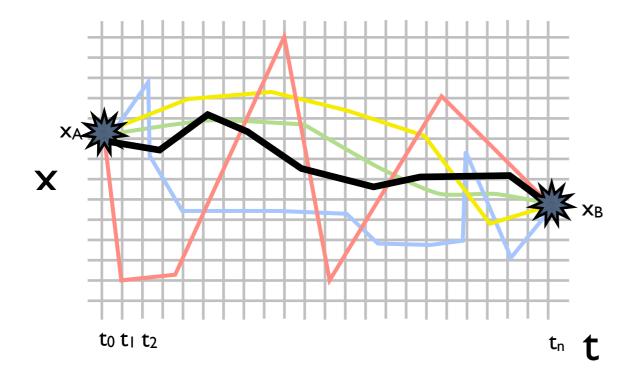


Small interlude: Lattice QCD

Lattice QCD

Numerical first-principles approach to non-perturbative QCD

- Discretise QCD onto 4D space-time lattice
- QCD equations
 — integrals over the values of quark and gluon fields on each site/link (QCD path integral)
- ~ I 0¹² variables (for state-of-the-art)

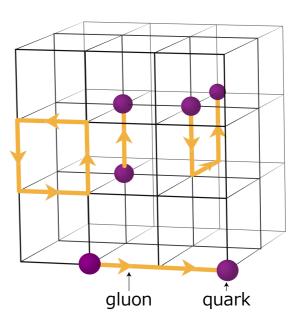


- Evaluate by importance sampling
- Paths near classical action dominate
- Calculate physics on a set (ensemble) of samples of the quark and gluon fields

Lattice QCD

Numerical first-principles approach to non-perturbative QCD

- Euclidean space-time $t \rightarrow i \tau$
- \circ Finite lattice spacing a
- Volume $L^3 \times T = 64^3 \times 128$
- Boundary conditions



Approximate the QCD path integral by Monte Carlo

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A \mathcal{D}\overline{\psi} \mathcal{D}\psi \mathcal{O}[A, \overline{\psi}\psi] e^{-S[A, \overline{\psi}\psi]} \longrightarrow \langle \mathcal{O} \rangle \simeq \frac{1}{N_{\text{conf}}} \sum_{i}^{N_{\text{conf}}} \mathcal{O}([U^{i}])$$

with field configurations U^i distributed according to $e^{-S[U]}$

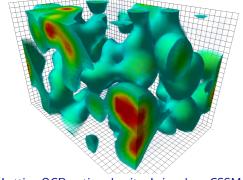
Lattice QCD

Workflow of a lattice QCD calculation

- 1 Generate field configurations via Hybrid Monte Carlo
 - Leadership-class computing
 - ~100K cores or 1000GPUs, 10's of TF-years
 - O(100-1000) configurations, each $\sim 10-100$ GB
- TOP 500
 The List.

- 2 Compute propagators
 - Large sparse matrix inversion
 - ~few IOOs GPUs
 - I0x field config in size, many per config

- Contract into correlation functions
- ~few GPUs
- O(100k-1M) copies

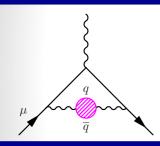


Hadrons are emergent phenomena of statistical average over background gluon configurations

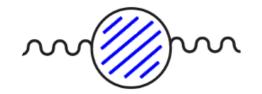
1 year on supercomputer
 ~ 100k years on laptop

HVP from the lattice &

Window observables



HVP from LQCD



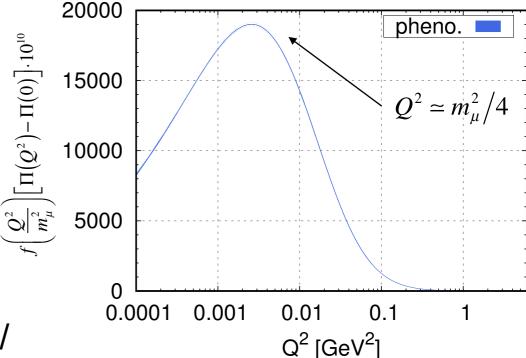
$$\Pi_{\mu\nu}(Q) = \int d^4x \ e^{iQ\cdot x} \left\langle J_{\mu}(x)J_{\nu}(0)\right\rangle = \left[\delta_{\mu\nu}Q^2 - Q_{\mu}Q_{\nu}\right] \Pi\left(Q^2\right)$$

$$a_{\mu}^{\text{HVP,LO}} = 4\alpha_{em}^2 \int_{0}^{\infty} dQ^2 \frac{1}{m_{\mu}^2} f\left(\frac{Q^2}{m_{\mu}^2}\right) \left[\Pi(Q^2) - \Pi(0)\right]$$

B. E. Lautrup et al., 1972

FV & $a \neq 0$: A. discrete momenta $(Q_{\min} = 2\pi/T > m_{\mu}/2); \text{B.} \ \Pi_{\mu\nu}(0) \neq 0 \text{ in FV}$ contaminates $\Pi(Q^2) \sim \Pi_{\mu\nu}(Q)/Q^2 \text{ for } Q^2 \rightarrow 0 \text{ w/}$

very large FV effects; $C.\Pi(0) \sim \ln(a)$



F. Jegerlehner, "alphaQEDc17"

Time-Momentum Representation

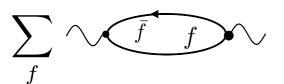
$$a_{\mu}^{\text{HVP,LO}} = 4\alpha_{em}^2 \int_{0}^{\infty} dt \ \widetilde{f}(t) \ V(t)$$

$$V(t) = \frac{1}{3} \sum_{i=1,2,3} \int d\vec{x} \left\langle J_i(\vec{x},t) J_i(0) \right\rangle$$

D. Bernecker and H. B. Meyer, 2011

Time-Momentum Representation

- No reliance on exp. data, except for hadronic quantities used to calibrate the simulation $(M_{\pi}, M_{K}, M_{nucl}, ...)$
- Can perform an explicit quark flavor separation of $a_u^{\rm HVP,LO}$



light-quark connected

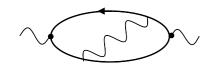
 $a_u^{\text{HVP,LO}}(\text{ud}) \sim 90\% \text{ of total}$

s,c-quark connected

 $a_{\mu}^{\text{HVP,LO}}(s,c) \sim 8\%, 2\% \text{ of total}$

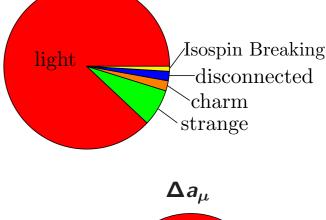
disconnected

 $a_{u,disc}^{\text{HVP,LO}} \sim 2\%$ of total

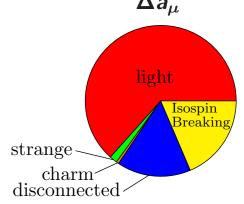


IB
$$(m_u \neq m_d + \text{QED})$$

$$\delta a_{\mu}^{\rm HVP,LO} \sim 1\%$$
 of total



 a_{μ}

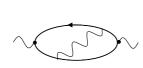


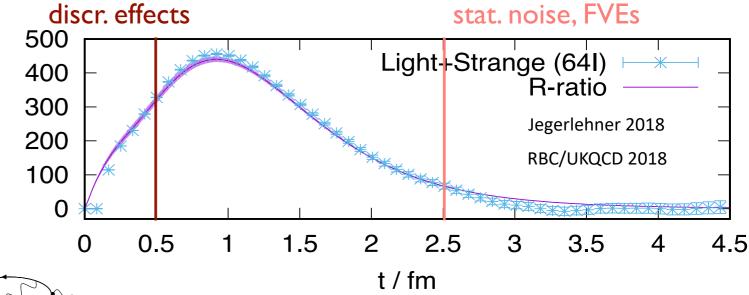
Challenges:

- sub-percent stat. precision exp. growing StN ratio in V(t) as $t \to \infty$
- correct for FVEs, control discr. effects (scale setting and continuum extrap.)

• isospin-breaking: $m_u \neq m_d$, $\alpha_{em} \neq 0$

quark-disconn. diagrams control stat. & stochastic noise



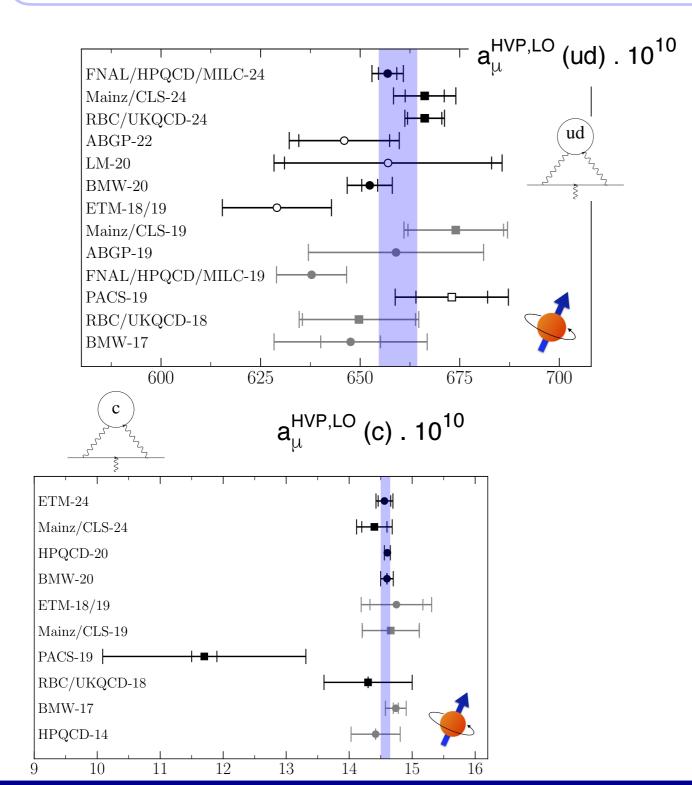


Results for each contribution

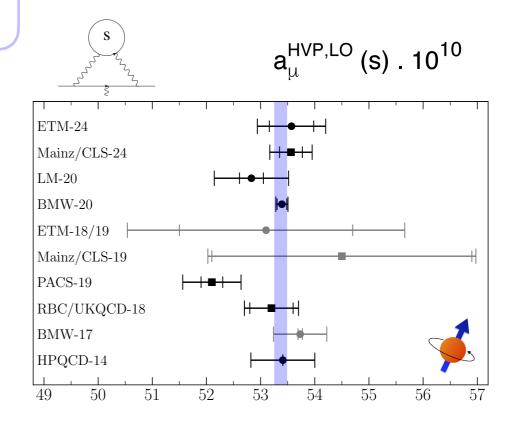
prescription. We define *isospin-symmetric QCD* (*isoQCD*) to be the $\alpha = 0$ theory where quark masses are tuned to reproduce the following complete set of inputs

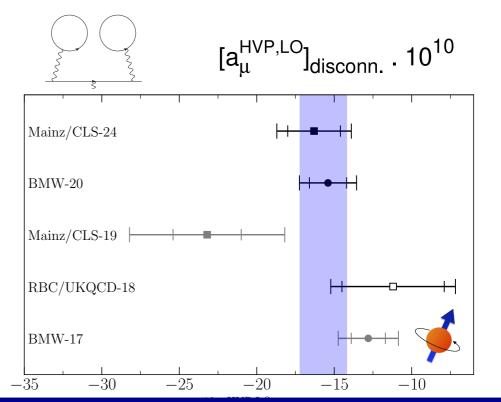
 $M_{\pi^+} = 135.0 \text{ MeV}, \quad M_{K^0} = M_{K^+} = 494.6 \text{ MeV}, \quad M_{D_s^+} = 1967 \text{ MeV}, \quad \text{and} \quad w_0 = 0.17236 \text{ fm},$ (3.9)

where w_0 is the Wilson flow scale introduced in Ref. [424]. We call this prescription the WP25 scheme. The only



WP '25





Windows "on the g-2 mystery"

Restrict integration over Euclidean time to sub-intervals

reduce/enhance sensitivity to systematic effects

$$\left(a_{\mu}^{\text{HVP,LO}} = a_{\mu}^{SD} + a_{\mu}^{W} + a_{\mu}^{LD}\right)$$

$$a_{\mu}^{SD}(f;t_{0},\Delta) \equiv 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, \tilde{f}(t) V^{f}(t) \left[1 - \Theta\left(t,t_{0},\Delta\right) \right]$$

$$a_{\mu}^{W}(f;t_{0},t_{1},\Delta) \equiv 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, \tilde{f}(t) V^{f}(t) \Big[\Theta\left(t,t_{0},\Delta\right) - \Theta\left(t,t_{1},\Delta\right) \Big] \Big|$$

$$a_{\mu}^{LD}(f;t_{1},\Delta) \equiv 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, \tilde{f}(t) V^{f}(t) \, \Theta\left(t,t_{1},\Delta\right)$$

$$\Theta(t, t', \Delta) = \frac{1}{1 + e^{-2(t-t')/\Delta}}$$

"Standard" choice:

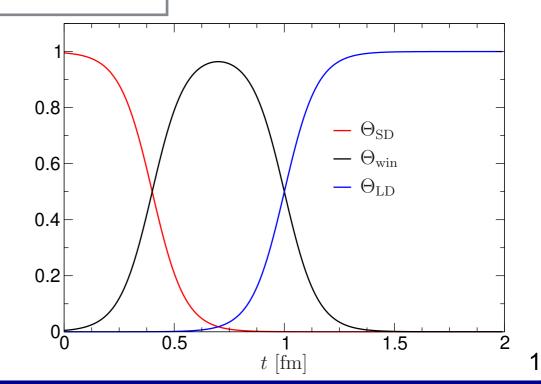
$$t_0 = 0.4 \text{ fm}$$
 $t_1 = 1.0 \text{ fm}$

 $\Delta = 0.15 \text{ fm}$

RBC/UKQCD 2018

Intermediate window

- Reduced FVEs
- Much better StN ratio
- Precision test of different lattice calculations
- → Commensurate uncertainties compared to dispersive evaluations



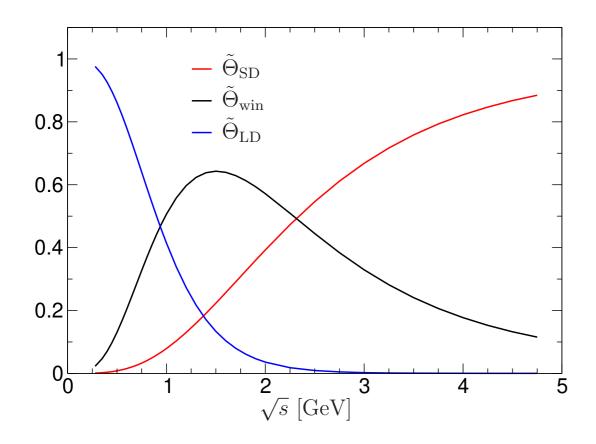
Comparison with R-ratio

$$V(t) = \frac{1}{12\pi^2} \int_{M_{\pi^0}}^{\infty} d(\sqrt{s}) R(s) s e^{-\sqrt{s}t} \qquad R(s) = \frac{3s}{4\pi\alpha_{em}^2} \sigma(s, e^+e^- \to hadrons)$$

$$R(s) = \frac{3s}{4\pi\alpha_{em}^2} \sigma(s, e^+e^- \to hadrons)$$

Insert V(t) into the expression for TMR

$$a_{\mu,win}^{\text{HVP,LO}} = 4\alpha_{em}^2 \int_{M_{\pi^0}}^{\infty} d(\sqrt{s}) R(s) \frac{1}{12\pi^2} s \int_0^{\infty} dt \, \tilde{f}(t) \, \Theta_{win}(t) \, e^{-\sqrt{s}t}$$

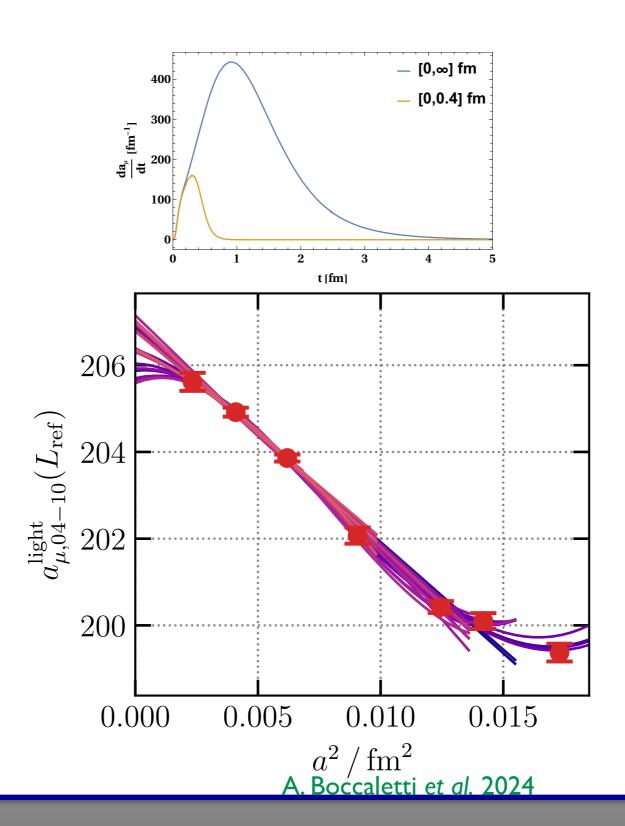


Colangelo et al. 2022

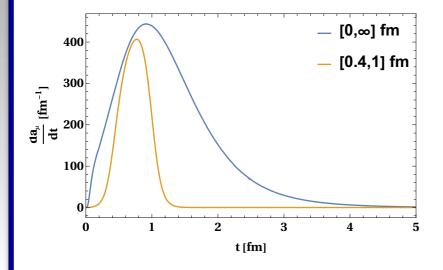
	$a_{ m SD}^{ m HVP}$	$a_{ m int}^{ m HVP}$	$a_{ m LD}^{ m HVP}$	$a_{ m total}^{ m HVP}$
All channels	68.4(5)	229.4(1.4)	395.1(2.4)	693.0(3.9)
An chamicis	[9.9%]	[33.1%]	[57.0%]	[100%]
2π below 1.0 GeV	13.7(1)	138.3(1.2)	342.3(2.3)	494.3(3.6)
2h below 1.0 Ge v	[2.8%]	[28.0%]	[69.2%]	[100%]
3π below 1.8 GeV	2.5(1)	18.5(4)	25.3(6)	46.4(1.0)
3% below 1.8 GeV	[5.5%]	[39.9%]	[54.6%]	[100%]
White Paper [1]	_	_	_	693.1(4.0)
RBC/UKQCD [24]	_	231.9(1.5)	_	715.4(18.7)
BMWc [36]	_	236.7(1.4)	_	707.5(5.5)
BMWc/KNT [7, 36]	_	229.7(1.3)	_	_
Mainz/CLS [99]	_	237.30(1.46)	_	_
ETMC [100]	69.33(29)	235.0(1.1)	_	_

Benchmarking of lattice calculations: windows

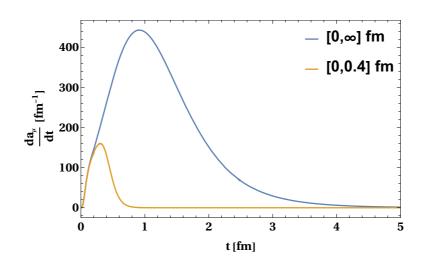
 $0.4 \rightarrow 1 \text{ fm}$



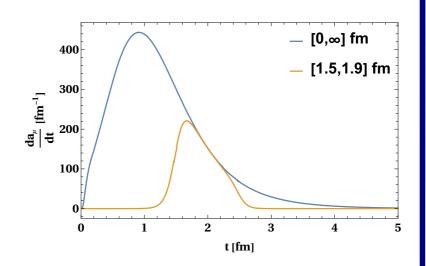
Benchmarking of lattice calculations: windows



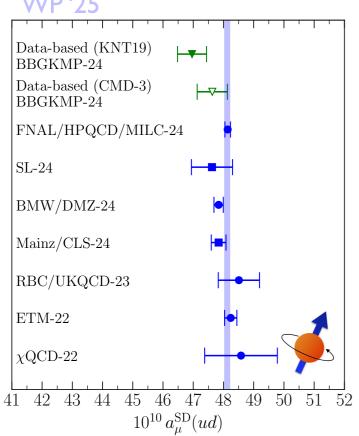
$0.4 \rightarrow 1 \text{ fm}$

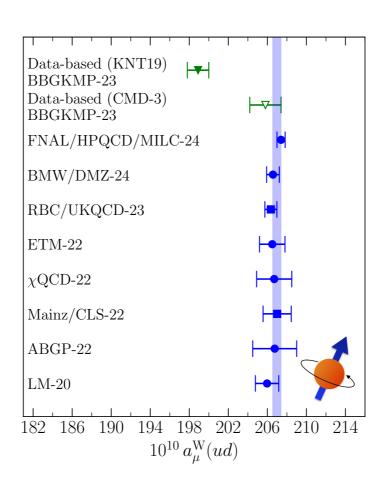


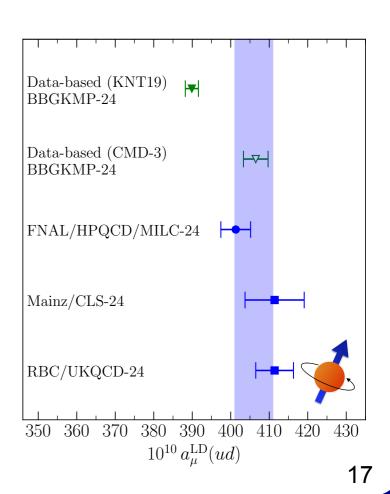
 $1 \rightarrow \infty$ fm



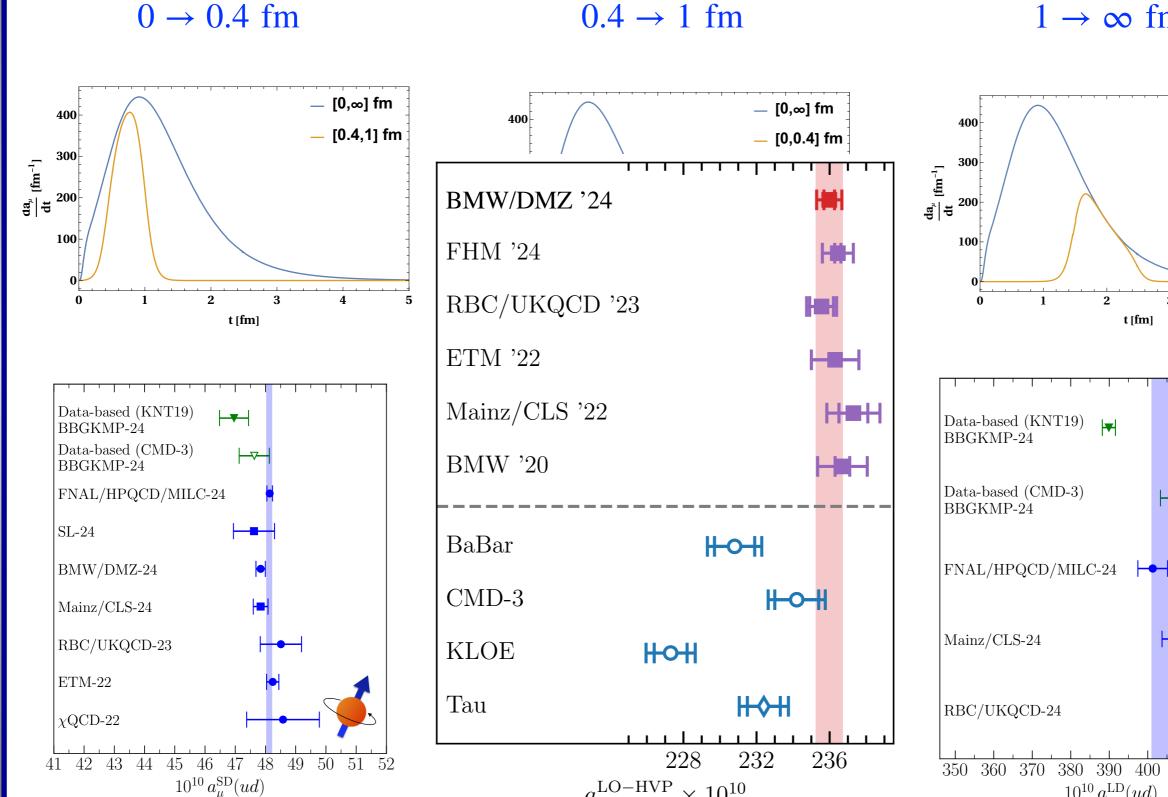
WP '25





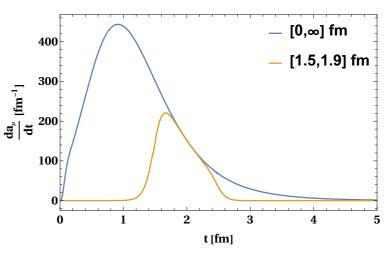


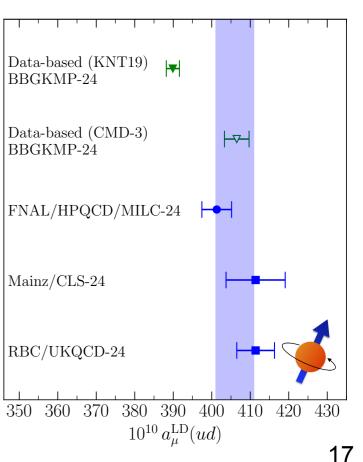
Benchmarking of lattice calculations: windows



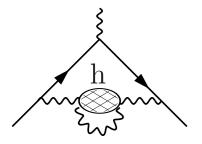
 $a_{\mu,04-10}^{\rm LO-HVP} \times 10^{10}$

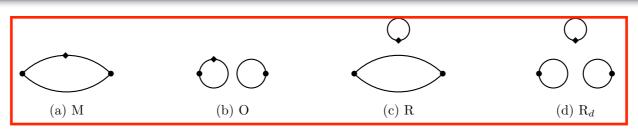
A. Boccaletti et al. 2024

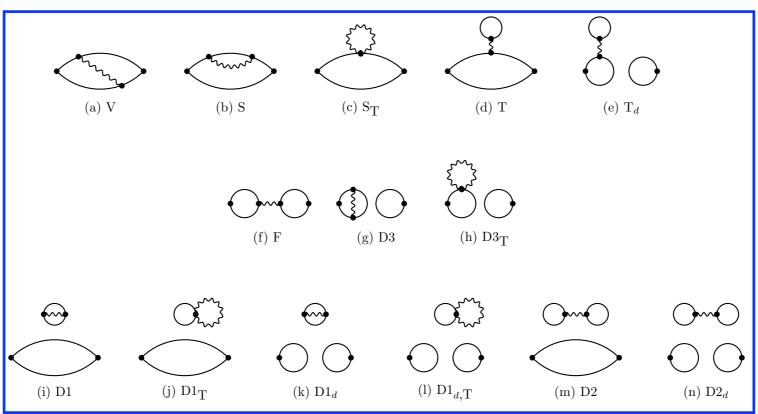




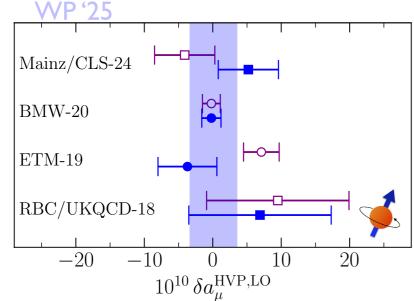
Isospin-breaking contributions







 α_{em}



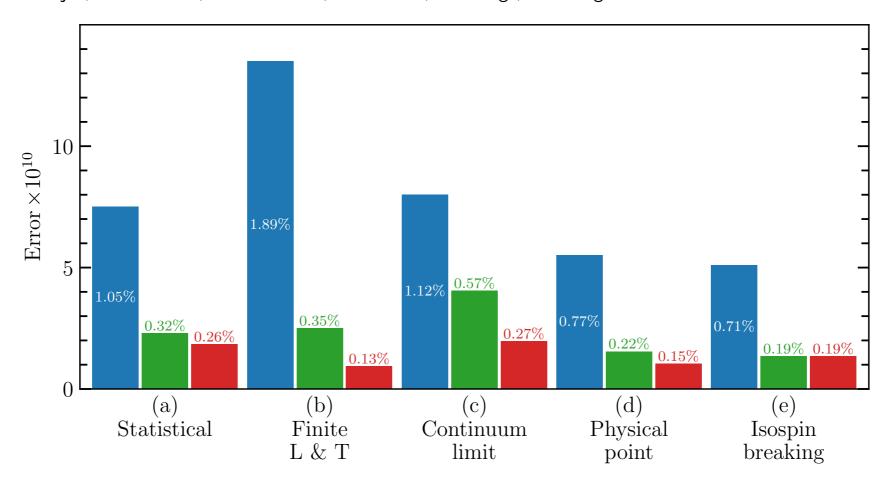
- Small overall value due to large cancellations
- Large statistical uncertainties
- More calculations are in progress

The BMW/DMZ-24 calculation including an update

BMW/DMZ-24 calculation

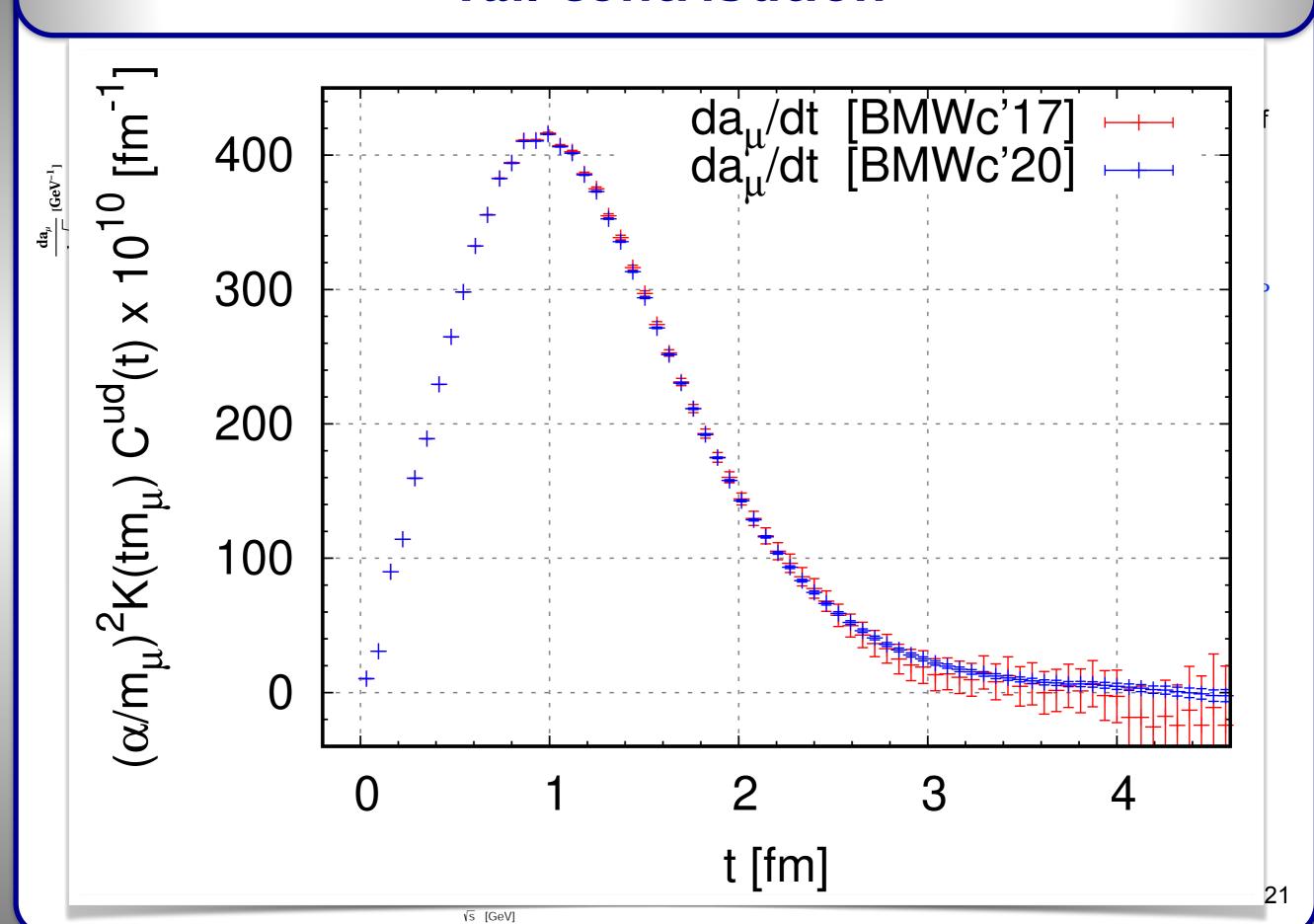
High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly

A. Boccaletti^{1,2}, Sz. Borsanyi¹, M. Davier³, Z. Fodor^{1,4,5,2,6,7,*}, F. Frech¹, A. Gérardin⁸, D. Giusti^{2,9}, A.Yu. Kotov², L. Lellouch⁸, Th. Lippert², A. Lupo⁸, B. Malaescu¹⁰, S. Mutzel^{8,11}, A. Portelli^{12,13}, A. Risch¹, M. Sjö⁸, F. Stokes^{2,14}, K.K. Szabo^{1,2}, B.C. Toth¹, G. Wang⁸, Z. Zhang³

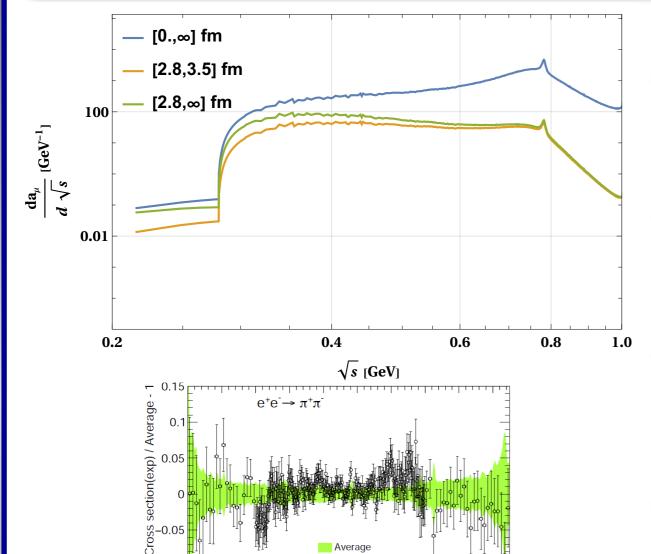


- New lattice spacing a = 0.048 fm (same cost as all of BMWc '20) \longrightarrow divides a^2 effects by 2
- Over 30,000 gauge configurations, 10's of millions of measurements

Tail contribution



Tail contribution

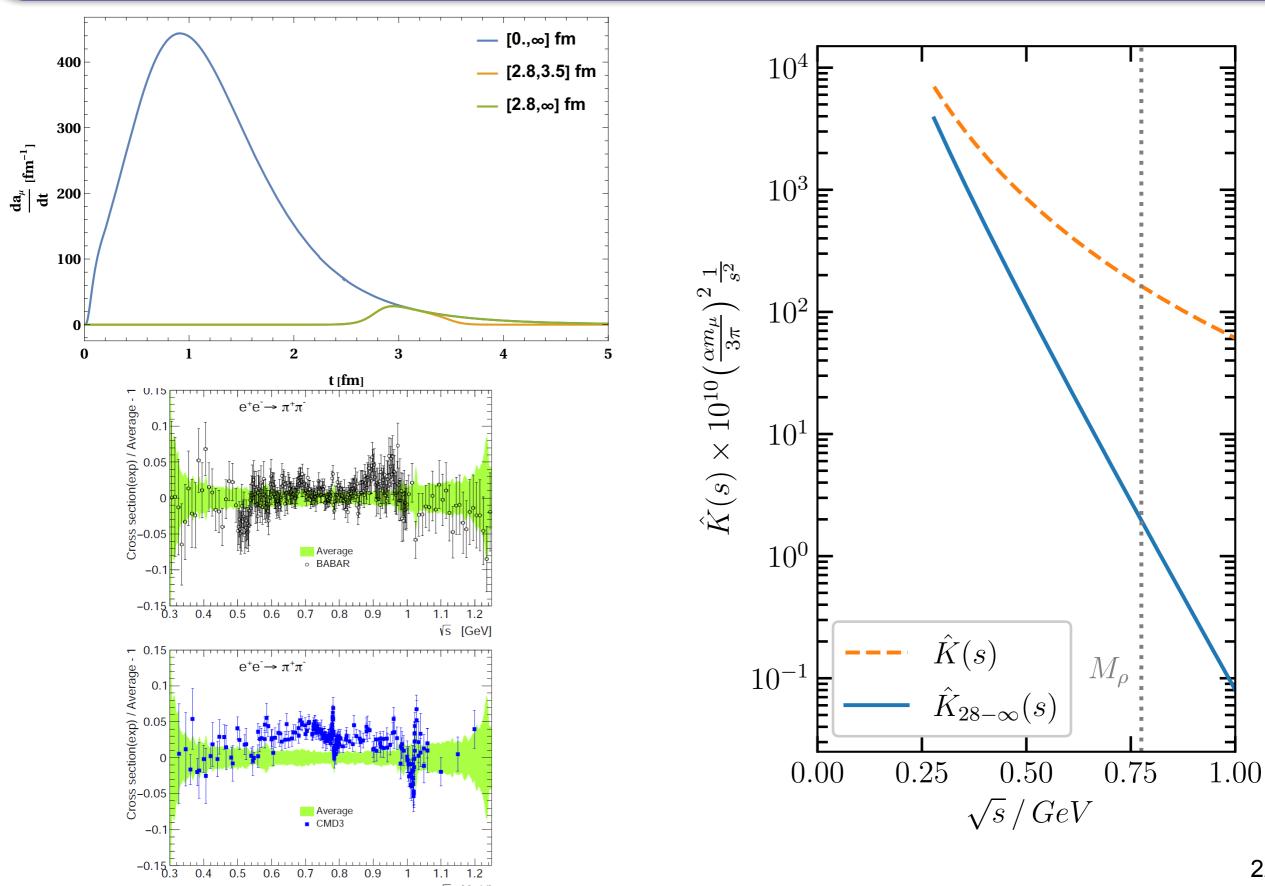


- Lattice computation up to $t=2.8~{\rm fm}:>95\,\%$ of final result for $a_{\mu}^{\rm LO-HVP}$
- Tail $a_{\mu,28-\infty}^{\rm LO-HVP}$ computed using $e^+e^- \to {\rm hadrons}$ for $t>2.8~{\rm fm}: \lesssim 5~\%$ of final result for $a_{\mu}^{\rm LO-HVP}$
- Tail dominated by cross section below ρ peak: $\sim 75 \%$ for $\sqrt{s} \le 0.63$ GeV
- All measurements agree to within 1.4σ for $\sqrt{s}\lesssim 0.55$ GeV. Tensions that plague $a_{\mu}^{\rm LO-HVP}$ & $a_{\mu,\rm win}^{\rm LO-HVP}$ not present here

 $-0.15 \underbrace{\begin{array}{c} -0.15 \\ 3 \end{array} 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1 \quad 1.1 \quad 1.2}_{\text{VS}} \text{ [GeV]}$

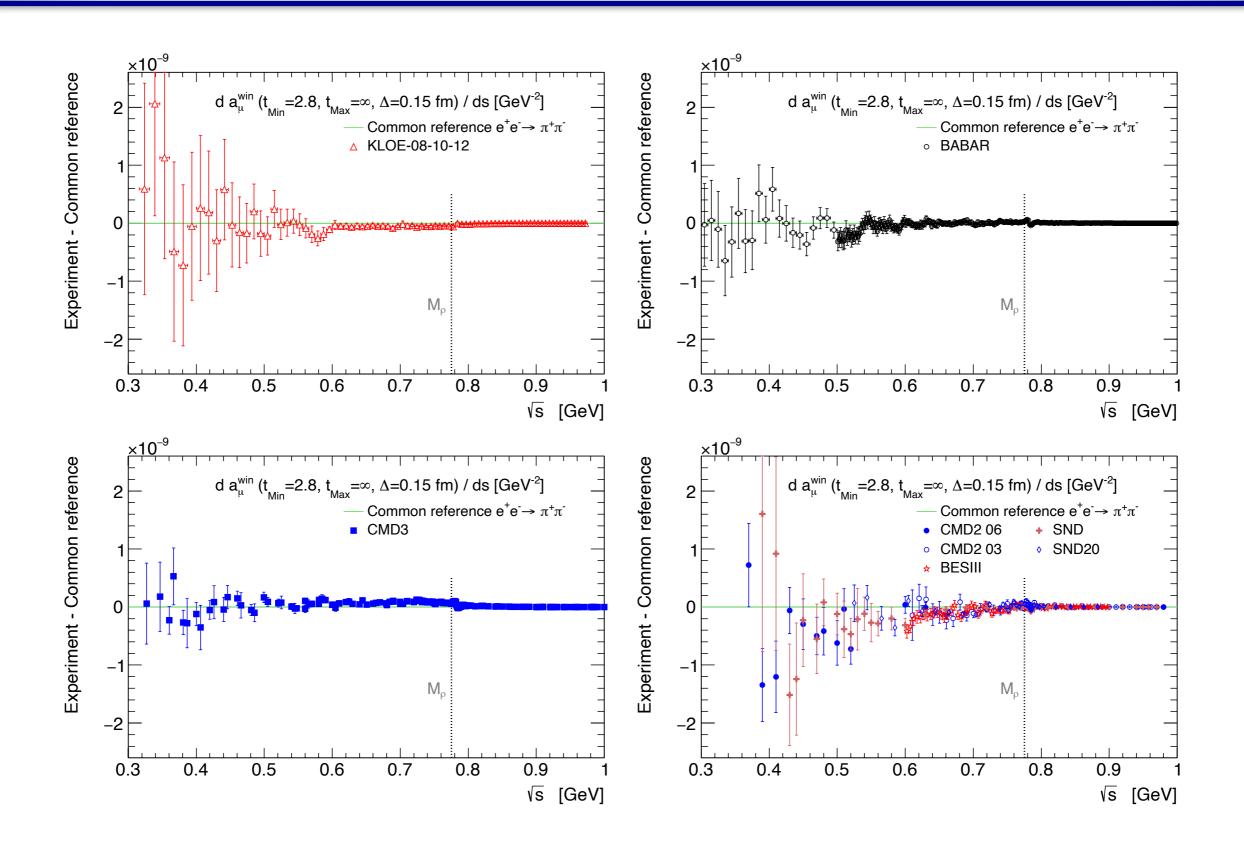
Partial tail $a_{\mu,28-35}^{\text{LO-HVP}}$ for comparison with lattice; dominated by cross section below ρ peak: $\sim 70 \,\%$ for $\sqrt{s} \leq 0.63 \,\,\text{GeV}$

Tail contribution

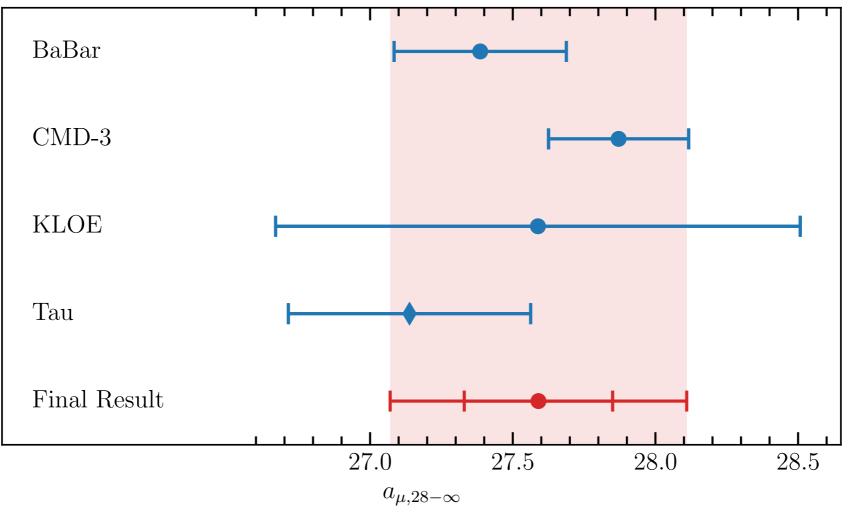


√s [GeV]

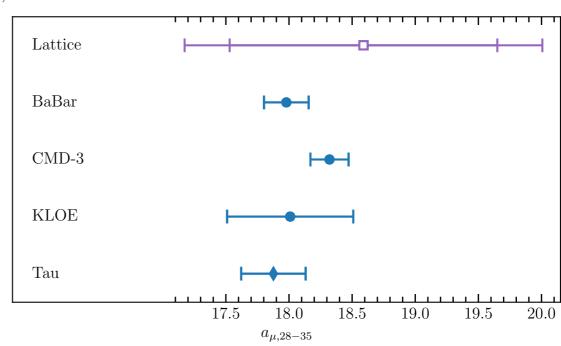
Cross section and the tail



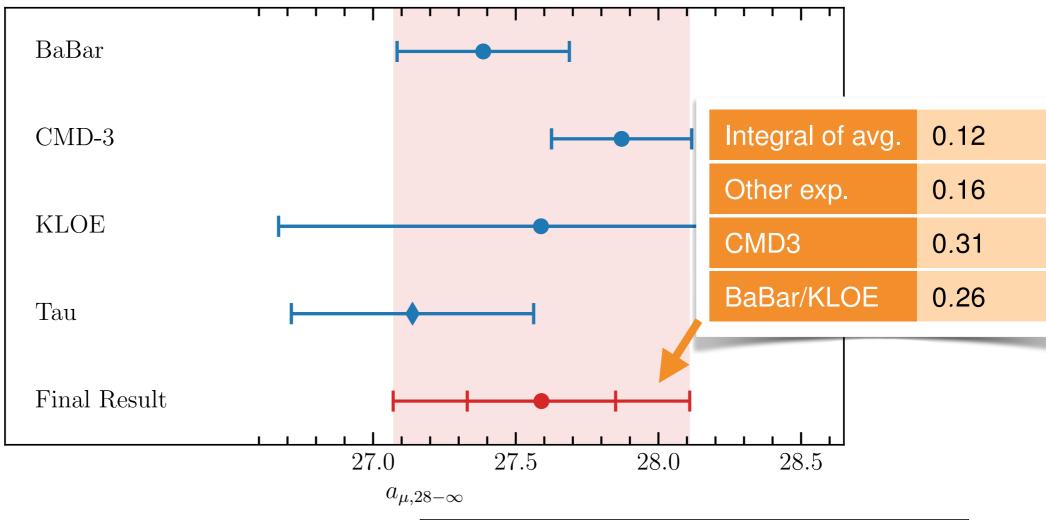
Data-driven tail



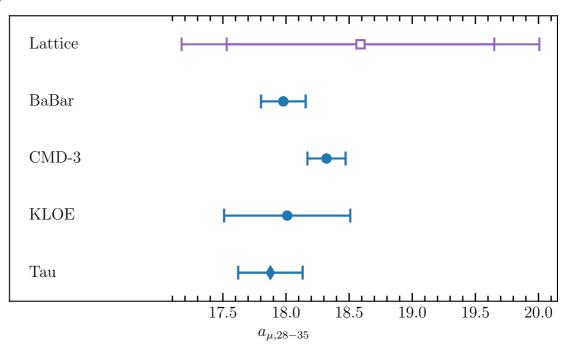
- Only $\lesssim 5\%$ of final result for a_{μ}
- Contributes \sim 65% to total squared uncertainty improvement: $5.5 \rightarrow 3.2$
- Even if the error was arbitrarily doubled, the effect on total uncertainty would be insignificant



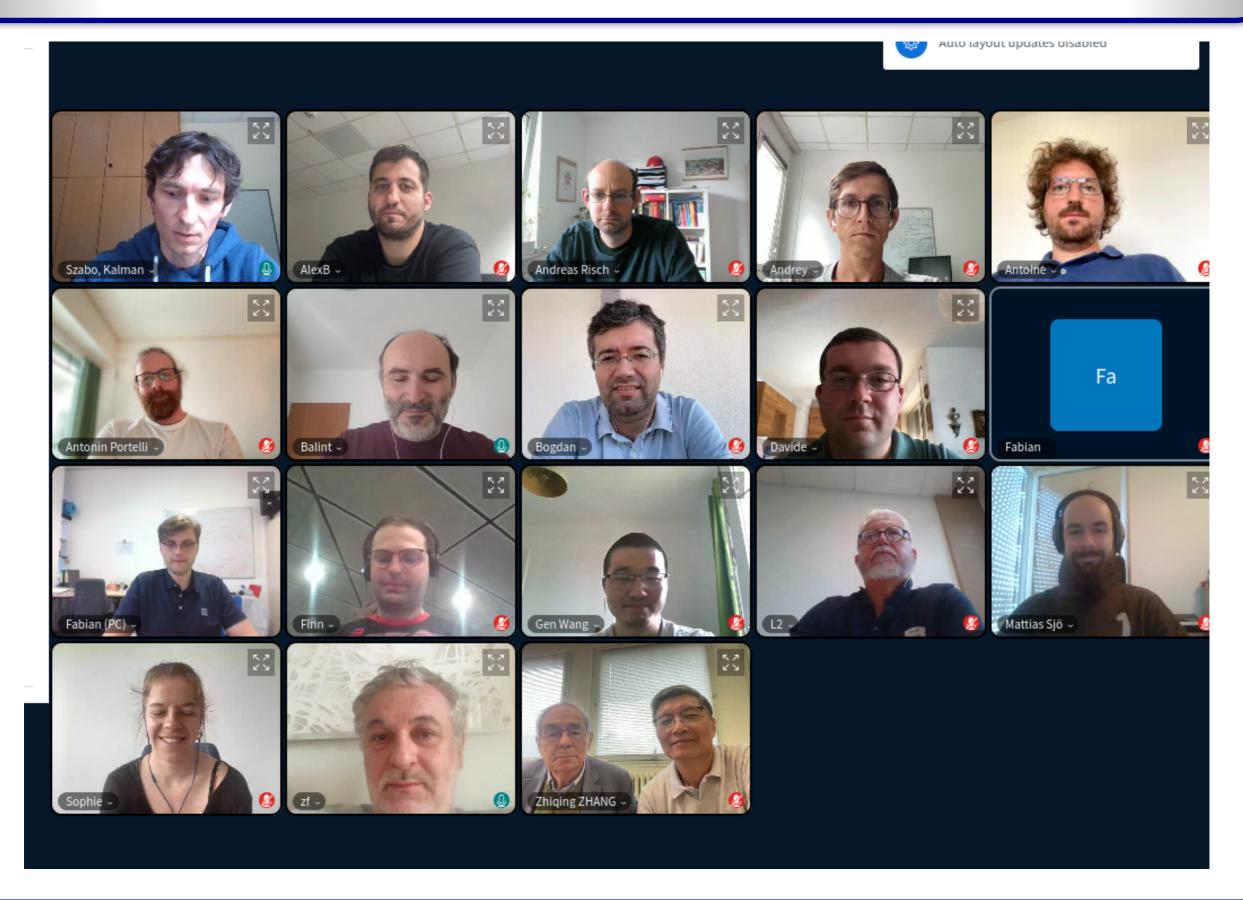
Data-driven tail



- Only $\leq 5\%$ of final result for a_{μ}
- Contributes \sim 65% to total squared uncertainty improvement: $5.5 \rightarrow 3.2$
- Even if the error was arbitrarily doubled, the effect on total uncertainty would be insignificant



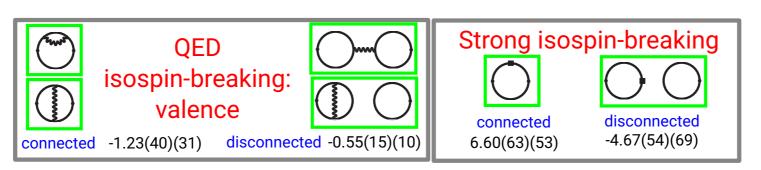
July 12, 2024: unblinding

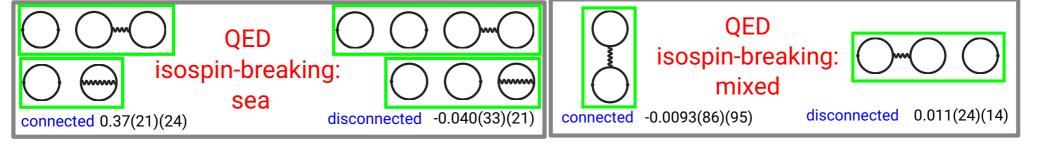


Summary of all contributions [BMW/DMZ-24]

light and disconnected $00-28$	618.6(1.9)(2.3)[3.0]	this work, Equation (34)
strange $00-28$	53.19(13)(16)[21]	this work, Equation (37)
$charm\ 00-28$	14.64(24)(28)[37]	this work, Equation (40)
light qed	-1.57(42)(35)	[5], Table 15 corrected in Equation (45)
light sib	6.60(63)(53)	[5], Table 15
disconnected qed	-0.58(14)(10)	[5], Table 15
disconnected sib	-4.67(54)(69)	[5], Table 15
disconnected charm	0.0(1)	[31], Section 4 in Supp. Mat.
strange qed	-0.0136(86)(76)	[5], Table 15
charm qed	0.0182(36)	[43]
bottom	0.271(37)	[44]
tail from data-driven $28-\infty$	27.59(17)(9)[26]	this work, Equation (50)
total	714.1(2.2)(2.5)[3.3]	ArXiv:2407.

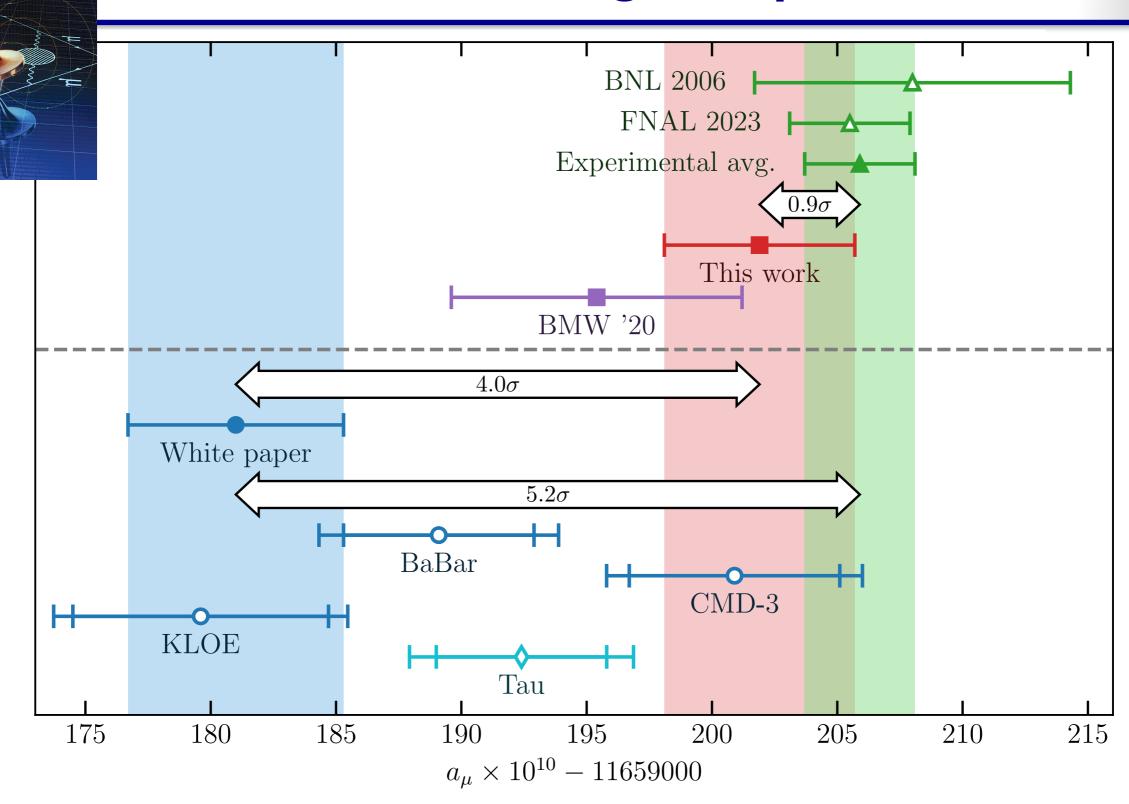
 $a_{\mu}^{\text{LO-HVP}} \times 10^{10} = 714.1(2.2)(2.5)[3.3]$ [0.46%]





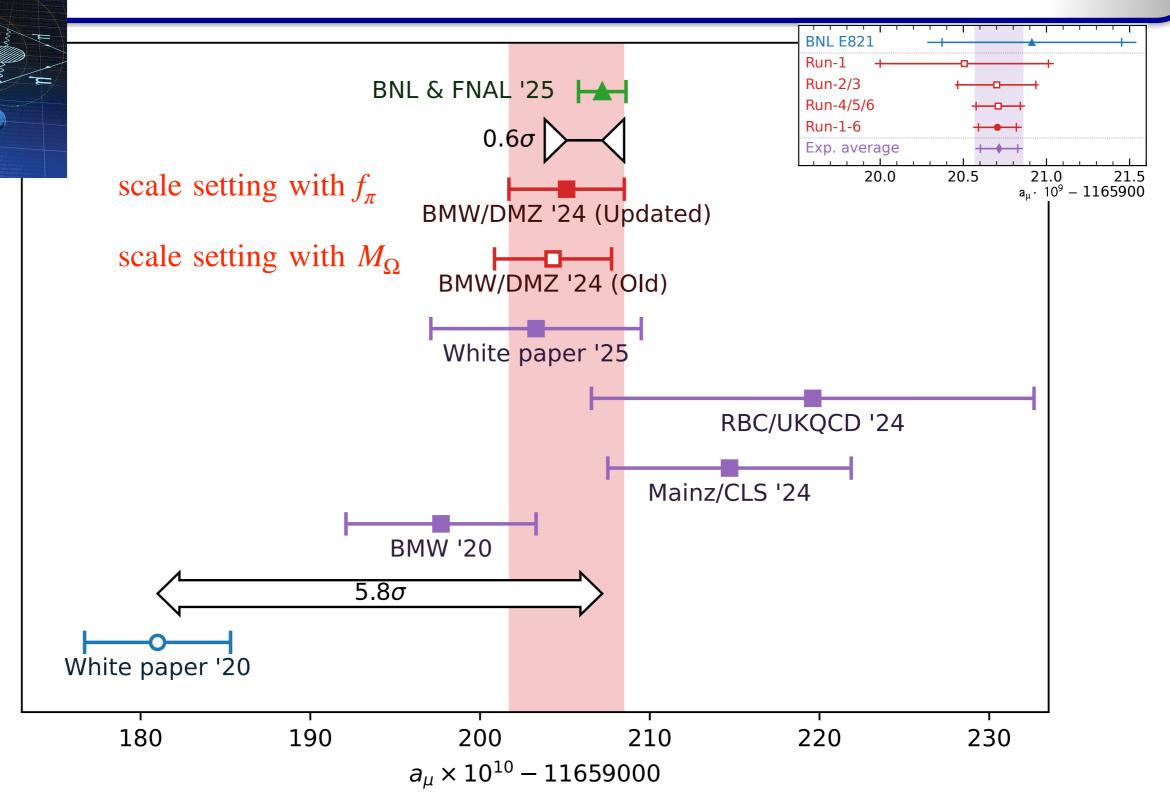
0913

BMW-DMZ '24 vs g-2 experiment



Indicates Standard Model confirmed to 0.32 ppm!

May 28, 2025: unblinding for new scale setting



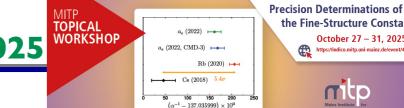
Indicates Standard Model confirmed to 0.32 0.29 ppm!

Summary and Outlook

- Tremendous progress in lattice calculations of HVP (and HLbL!) contributions
- New BMW-DMZ calculation to 0.44% w/ fully blinded analysis, confirming the SM to 0.29 ppm. This is a success of QFT (QED, EW, QCD) up to 11 digits!
- Good agreement between lattice calculations for various windows
- Compared to WP '20, in WP '25 the SM prediction is dominated by lattice calculations,
 w/ consolidated averages from many independent groups
- Hybrid lattice-dispersive approaches could soon provide competitive estimates for other "leptonic" observables
- Awaiting new KLOE, BESIII, Belle II, CMD3, data/analysis to clarify tensions in $\pi^+\pi^-$ and J-PARC entirely new method measurement

• $\mu e \rightarrow \mu e$ experiment MUonE very important for experimental cross-check and complementarity w/ LQCD

Talk by DG @ALPHA2025



the Fine-Structure Constan October 27 - 31, 2025

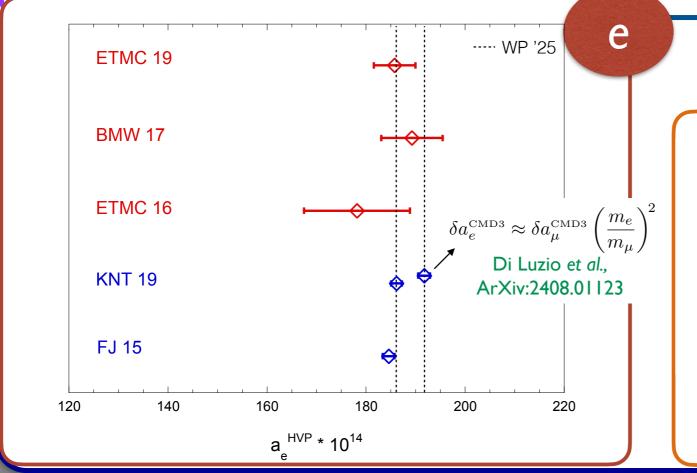
a HVP and a_{τ}^{HVP} : Lattice results

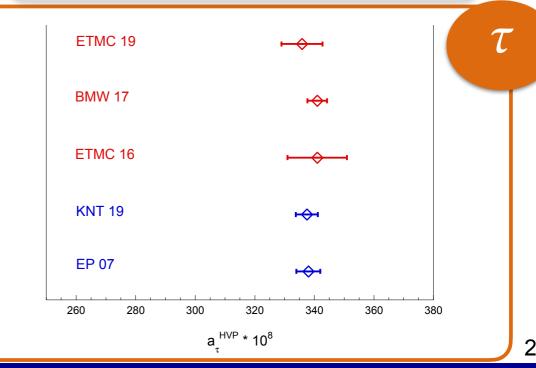
ArXiv:1910.03874

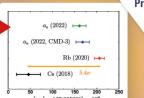
IB

\overline{f}	$a_e^{\mathrm{HVP}}(f) \cdot 10^{14}$	$a_{\tau}^{\mathrm{HVP}}(f) \cdot 10^{8}$
$\overline{}$ ud	170.7 (3.9)	273.3 (6.6)
s	13.5 (0.8)	36.2 (1.1)
c	3.5 (0.2)	25.8 (0.8)
disc	-3.8(0.4)	-2.4(0.3)

f	$\delta a_e^{\mathrm{HVP}}(f) \cdot 10^{14}$	$\delta a_{ au}^{ ext{HVP}}(f) \cdot 10^8$
ud	1.9 (0.8)	3.0 (1.1)
s	$-0.002 \ (0.001)$	$0.001\ (0.002)$
c	$0.004 \ (0.001)$	$0.032\ (0.006)$
total	1.9 (1.0)	3.0 (1.3)







Muonium hyperfine splitting

$$a_{Mu} \equiv \frac{1}{2} \left[\frac{\Delta \nu_{Mu}}{\nu_F} - 1 \right]$$

$$a_{Mu} \equiv \frac{1}{2} \left[\frac{\Delta \nu_{Mu}}{\nu_F} - 1 \right] \qquad \nu_F = \frac{16}{3} c R_\infty \, \alpha_{em}^2 \frac{m_e}{m_\mu} \left(1 + \frac{m_e}{m_\mu} \right)^{-3}$$

$$\Delta \nu_{Mu}^{exp} = 4~463~302~776~[51]~\mathrm{Hz}$$

$$\Delta \nu_{Mu}^{exp} = 4~463~302~776~[51]~\mathrm{Hz}$$
 $a_{Mu}^{exp} = 10~624~150~(56)_{\Delta \nu_{Mu}^{exp}}~(568)_{\nu_F}~[571] \cdot 10^{-10}$

$$\Delta \nu_{Mu}^{SM} = 4~463~302~872~[515]~{\rm Hz}$$

$$\Delta \nu_{Mu}^{SM} = 4~463~302~872~[515]~{\rm Hz}$$
 $a_{Mu}^{SM} = 10~624~305~(95)_{QED}~(3)_{had}~[95] \cdot 10^{-10}$

$$a_{Mu}^{HVP,LO} = 4\alpha_{em}^2 \int_0^\infty dt K_{Mu}(t)V(t)$$

$$K_{Mu}(t) = \frac{m_e}{m_\mu} t^2 \int_0^1 dx \, \frac{16 - 6x - x^2}{2x^2} \left[1 - j_0^2 \left(\frac{m_\mu t}{2} \frac{x}{\sqrt{1 - x}} \right) \right]$$

Lattice QCD+QED

$$\Delta \nu_{Mu}^{\rm HVP, LO} = 231.7 \ (4.5) \ {\rm Hz}$$

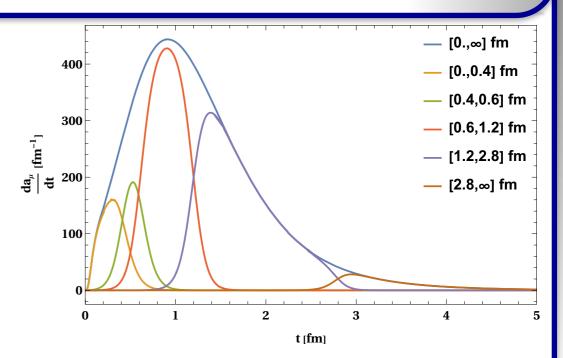
DG and S. Simula

$$\Delta \nu_{Mu}^{
m HVP,LO} = 232.04 \; (0.82) \; {
m Hz}$$
 KNT '19

NEW!

Strategy for improvement

- New simulations on finer lattice spacing: $128^3 \times 192 \text{ w/ } a = 0.048 \text{ fm}$
- Completely revamped analysis vs BMWc '20
- Break up analysis into optimized set of windows: 0-0.4, 0.4-0.6, 0.6-1.2, 1.2-2.8 fm
- Combined fit to $a_{\mu,\text{win},04-06}^{\text{LO-HVP}}$, $a_{\mu,\text{win},06-12}^{\text{LO-HVP}}$, $a_{\mu,\text{win},12-28}^{\text{LO-HVP}}$
- lacktriangle Continuum extrapolate I = 0 instead of disconnected
- → reduces statistical uncertainty
- \rightarrow reduces $a \rightarrow 0$ error
 - Data-driven evaluation of tail: $a_{\mu,28-\infty}^{\text{LO-HVP}}$ (proposed and used w/ 1 fm $\rightarrow \infty$ [RBC/UKQCD '18])
- \rightarrow reduces FV effect 18.5(2.5) \rightarrow 9.3(9), i.e. cv \div 2 & err \div 3
- → reduces LD noise
- \rightarrow reduces LD taste breaking and $a \rightarrow 0$ error



[plot made w/ KNT '18 data set]

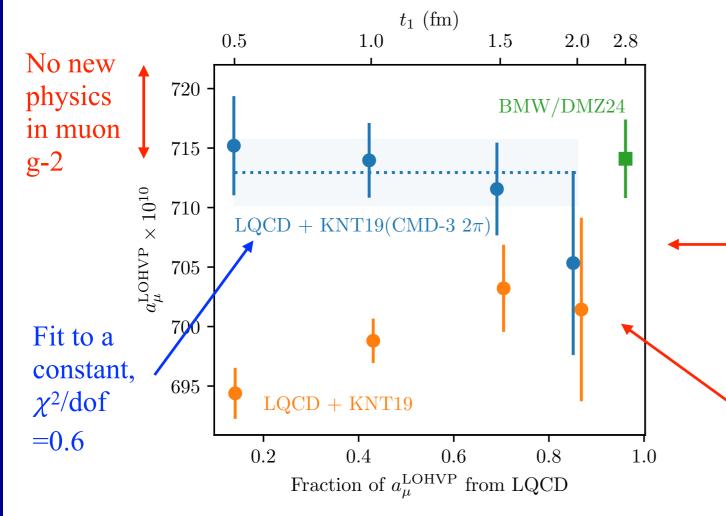
Fully blinded analysis:

- Independent blinding by factor ±3% on correlator for each window and component, including data-driven tail
- ≥ 2 independent analyses of all blinded $a_{\mu}^{\text{LO-HVP}}$ contributions (and of other aspects)
- Once agreement reached, partial unblinding to allow sum of contributions
- Full unblinding on July 12, 2024, w/ automatic script that made appropriate changes in all figures and text
- Paper submitted to arXiv on July 15, 2024

talk by C. Davies @ Lattice 2024

Pragmatic hybrid strategy for further full HVP results

Thanks to A. Keshavarzi and P. Lepage



Use LQCD in one-sided time window up to t_1 . Add in data-driven result for t_1 to ∞ .

Totals should agree for different t₁

- test of validity of data-driven (and LQCD)
- choose smallest error or fit to a constant

Using 2019 FHM LQCD results for one-sided windows (2207.04765):

- totals are flat in t_1 for CMD3 2π
- total w. CMD-3 agrees with BMW/DMZ '24 for all values of t₁
- newer lattice data have much better uncertainties for t₁ ≥ 2fm

Smaller t₁: reduces lattice stat. and finite vol. error but increases input from data-driven tail

Hybrid strategy best to optimise uncertainty on total HVP?

Larger t_1 : CMD3/KNT19 tension falls: <0.3% total HVP for $t_1 \ge 2.5$ fm