Status of MEG-II and future plans

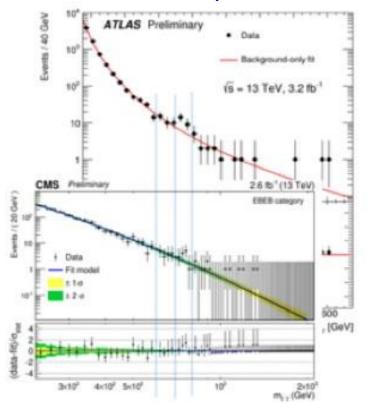
Donato Nicolò

Università di Pisa & INFN (on the behalf of MEG collaboration)

MPP2025, Liverpool

Outlook

- Theoretical issues
- The experiment
- $\mu \rightarrow e \gamma$ search, latest results
- Future plans
- Other "exotic" channels
- Conclusions


Theoretical issues

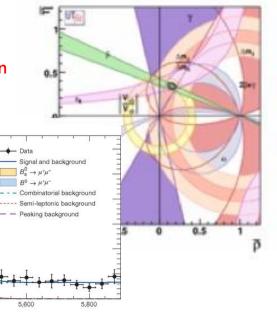
- cLFV as a probe of New Physics
- SUSY predictions
- Complementarity & redundancy

Experimental approaches to NP

Energy frontier

 search for direct production of new particles in the extended sector of the theory

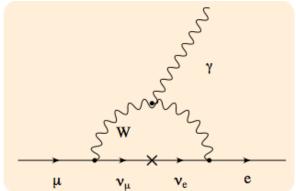
Intensity frontier


- deviations at lower energies from SM predictions due to diagram loops involving new particles
 - hadron flavour physics

 $m_{\mu^+\mu^-} \, (\text{MeV}/c^2)$

- neutrino physics
- proton decay

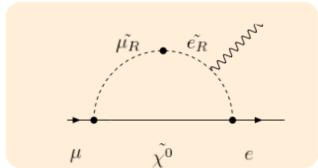
and also


charged lepton flavour violation (cLFV)

CMS and LHCb (LHC run I)

cLFV in the SM and beyond

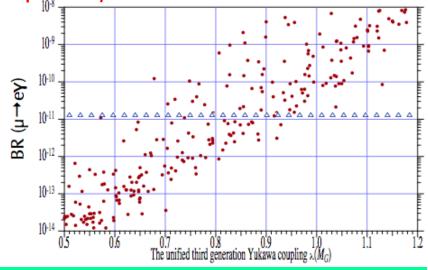
• SM: Dirac ν -oscillations \Rightarrow flavour mixing in the leptonic sector (PMNS matrix)



$$\frac{\Gamma(\mu \to e\gamma)}{\Gamma(\mu \to e \nu \overline{\nu})} \approx \left(\frac{\alpha}{2\pi}\right) \sin^2 2\theta_{\oplus} \left(\frac{\Delta m^2}{M_W^2}\right)^2 \approx 10^{-55}$$

S.M. Bilenky, S.T. Petcov, B.Pontecorvo Phys. Lett. B67 (1977)309 need of new Physics at higher mass scale → SUSY

SM-background free!


• SUSY: contributions from mixing in the High Energy sector of the theory (the heavier the mass, the higher the amplitude)

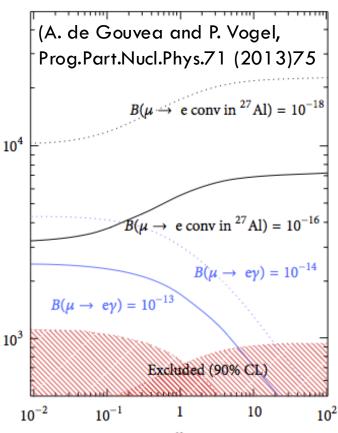
R. Barbieri et al., Nucl. Phys. B445(1995) 215

A. Masiero et al. Nucl. Phys. B649 (2003) 189

L. Calibbi et al. Phys. Rev. D74 (2006) 116002

cLFV golden channels

• arising from new lepton-lepton coupling $y_{ij}l_iF^{\mu\nu}l_j\sigma_{\mu\nu}$ (additional contribution to $\mu N \rightarrow eN$ amplitude due to Z-exchange)

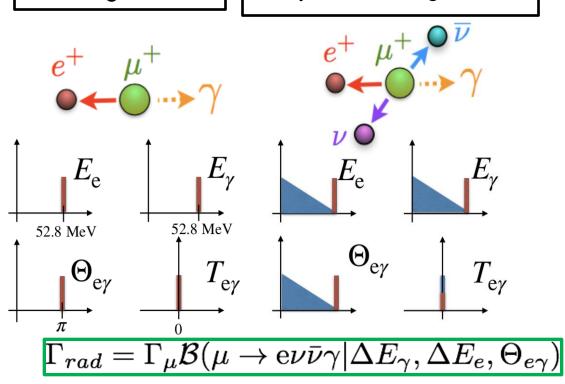


cLFV in effective theories

$$\mathcal{L}_{cLFV} = \frac{m_{\mu}}{(\mathcal{K}+1)\Lambda^{2}} \bar{\mu}_{R} \sigma_{\mu\nu} e_{L} F^{\mu\nu} + \frac{\mathcal{K}}{(\mathcal{K}+1)\Lambda^{2}} \bar{\mu}_{L} \gamma_{\mu} e_{L} (\bar{u}_{L} \gamma^{\mu} u_{L} + \bar{d}_{L} \gamma^{\mu} d_{L})$$

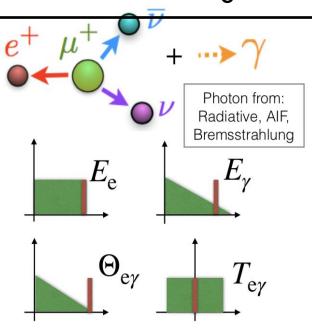
- effective lagrangian as a function of
 - NP energy scale Λ
 - dimensionless parameter k due to the relative strength of
 - dipole transition (dominant at $k \ll 1$) $\frac{B(\mu \mathcal{N} \to e \mathcal{N})}{B(\mu \to e \gamma)} \approx 10^{-2}$
 - four-fermion interaction (preferred at k≫1)
 µ→e conversion favoured
- cLFV is sensitive to NP scale up to $\Lambda \approx 10^4 \text{ TeV}^{10^3}$ (three orders of magnitude as large as nowadays direct searches)

A (TeV)


The MEG experiment

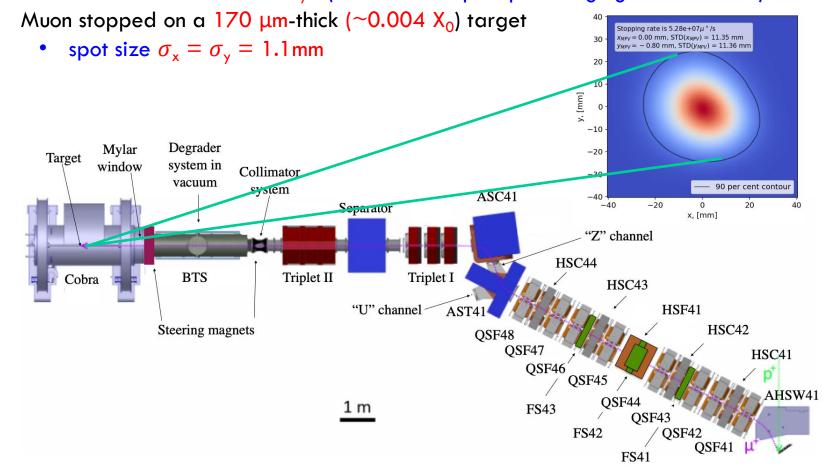
- Signature & background
- Detector upgrade
- Performances

Signal & background

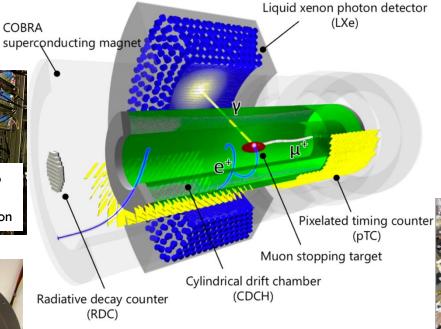

Signal

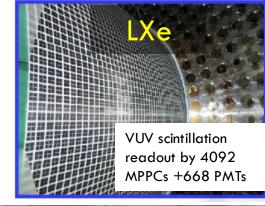
Physics background

$$\Gamma_{acc} \approx \Gamma_{\mu}^2 \Delta E_{\gamma}^2 \Delta E_e \Theta_{e\gamma}^2 \Delta t_{e\gamma}$$

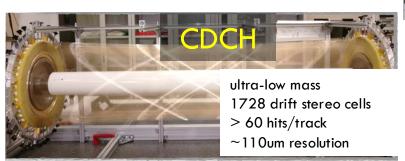

Accidental background

given the experimental resolution, this dominates at higher muon rates


The muon beam line


- Same beam as MEG-I (π E5), capable of delivering $> 10^8 \mu^+/\text{s}$ (p = 28 MeV/c)
 - limited so far to $\frac{5}{x}$ $\frac{10^7}{s}$ (so as to take pileup and aging under control)

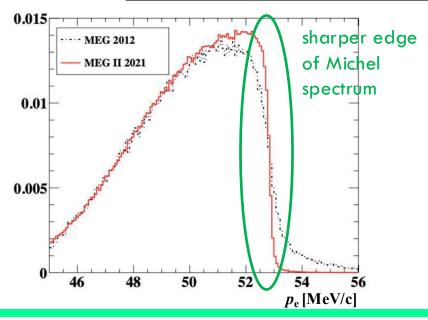
The upgraded detector

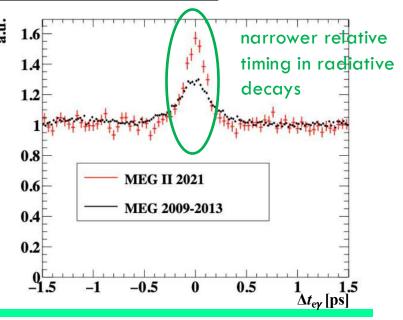


2 x 256 scintillating

tiles, fast SIPM

readout

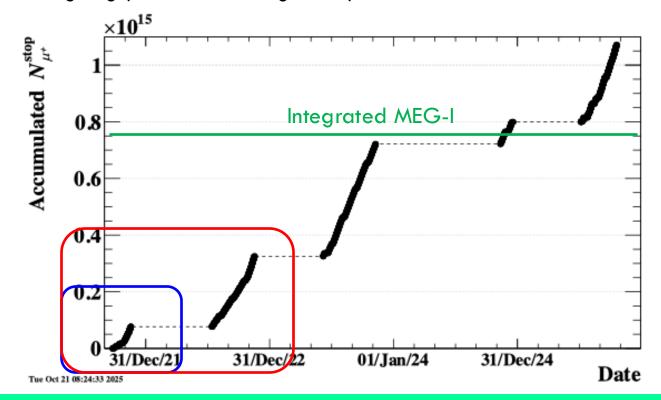




For further details, please refer to our technical paper (EPJ C84 (2024) 190)

Performance enhancement

Observable	MEG-I	MEG-II (proposal)	$\mathrm{MEG\text{-}II}\ (2022)$
$\sigma(p_e) \; (\text{keV/c})$	320	110	89
$\sigma(\theta_e, \phi_e)$ (mrad)	9.4, 8.7	5.0, 5.0	3.8, 6.2
$\sigma(y_e, z_e) \; (\mathrm{mm})$	1.2, 2.4	0.7, 1.2	0.61, 1.76
$arepsilon_e$ (%)	30	70	67
$\sigma(E_{\gamma}) \text{ (keV)}$			
(deep/shallow)	90/130	55/60	100/130
$\sigma(u_{\gamma},v_{\gamma}) \ (\mathrm{mm})$	5, 5,	2.4, 2.4	2.5, 2.5
ε_{γ} (%)	63	70	63
$\Delta t_{e\gamma} \; (\mathrm{ps})$	122	84	78



$\mu \rightarrow e \gamma$ search, latest results

- Data summary
- Analysis strategy
- Sensitivity projection vs. time

Integrated "luminosity" in MEG-II

- 2021: results published (combined with MEG full dataset) (EPJ C84 (2024) 216)
- 2022: " " (" 2021 run) (EPJ C85 (2025) 1177)
- 2023: long and stable run, analysis ongoing
- 2024: short run (LHe shortage due to PSI cryoplant failure)
- 2025: run ongoing (with crossed fingers ...)

Analysis strategy

likelihood blind analysis strategy data-driven pdfs as blinding observables: E_{γ} and $\Delta t_{e\gamma}$ functions of observables $\vec{x}_i = (p_e, E_\gamma, \theta_{e\gamma}, \phi_{e\gamma}, \Delta t_{e\gamma})_i$ 60 200 • signal: from detector **58** 180 response function 160 56 accidental: from event 140 distribution in time 54 120 sidebands 100 **52** RD: from RD energy 80 **50** sideband data distribution S and trigger simulation 40

20

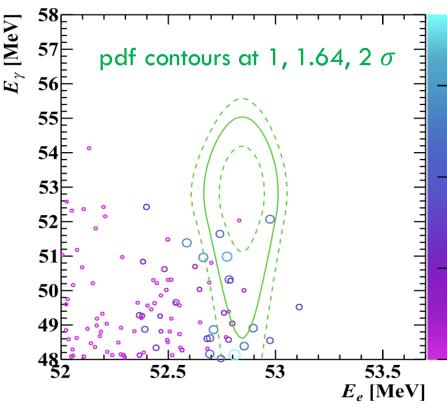
 $\mathbf{E}_{\gamma}(\mathbf{MeV})$

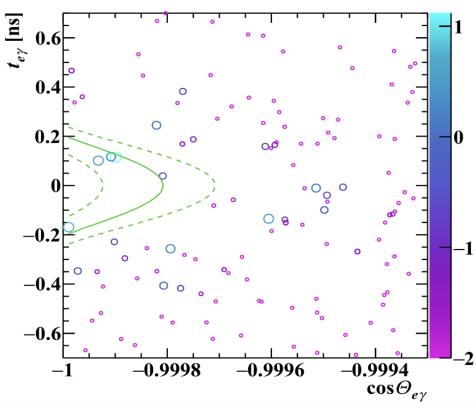
48

46

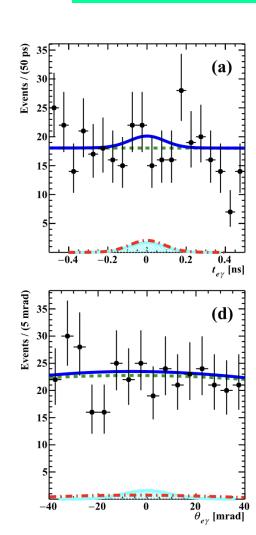
44

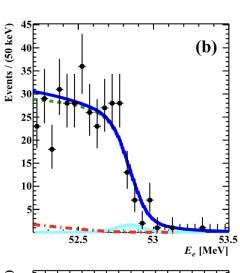
Energy Sideband

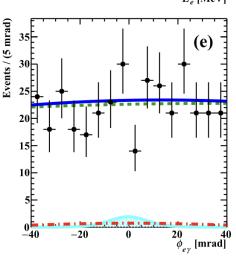

$$\mathcal{L}(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{ACC}}, x_{\text{T}}) = \frac{e^{-(N_{\text{sig}} + N_{\text{RMD}} + N_{\text{ACC}})}}{N_{\text{obs}}!} C(N_{\text{RMD}}, N_{\text{ACC}}, x_{\text{T}}) \times \prod_{i=1}^{N_{\text{obs}}} (N_{\text{sig}} S(\vec{x_i}) + N_{\text{RMD}} R(\vec{x_i}) + N_{\text{ACC}} A(\vec{x_i})),$$

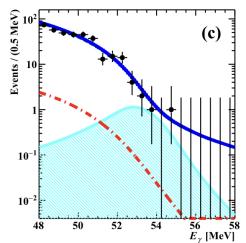

 $\Delta T_{e\gamma}(s)$

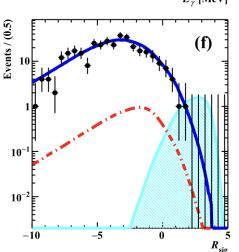
Event distribution (2021-2022)


- No excess over expected background observed so far
 - events in $(E_{\rm e},E_{\gamma}),\,(\Theta_{\rm e\gamma},\Delta t_{\rm e\gamma})$ scatter plots ranked by


$$R_{sig} = \log 10 \left(\frac{S(\vec{x}_i)}{f_{RMD}R(\vec{x}_i) + f_{ACC}A(\vec{x}_i)} \right)$$






Best fit and results

- Data
- Total exp
- RMD
- ACC
- SIG ULx4

Likelihood fit provides

$$N_{OBS} = 357$$

 $N_{ACC} = 357 \pm 19$
 $N_{RMD} = 0 \pm 0.8$

compatible with sideband estimates

$$N_{ACC} = 364 \pm 10$$

 $N_{RMD} = 10.1 \pm 1.7$

Normalization & systematics

Normalization

$$\mathcal{B}(\mu \to e\gamma) = \frac{N_{sig}}{k}$$

- normalization factor $k = (SES)^{-1}$
 - i.e. k is the number of muon decays in detector acceptance (folded by efficiencies)
- obtained by independent counts of
 - pre-scaled single positron triggers
 - radiative decays in the energy sideband
- combined (as of 2022 run)

$$k = (1.35 \pm 0.07) \times 10^{13}$$

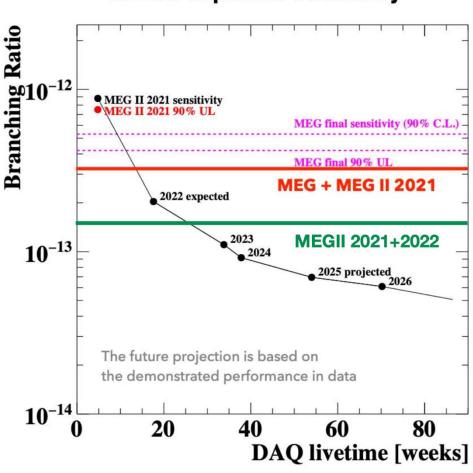
Systematics

- major sources
 - magnet-detector alignment
 - energy scale calibration
 - normalization
- uncertainty budget

Parameter	Impact on sensitivity
$\phi_{e\gamma}$ uncertainty	1.1 %
E_{γ} uncertainty	0.9%
$\theta_{e\gamma}$ uncertainty	0.7%
Normalization uncertainty	0.6%
$t_{e\gamma}$ uncertainty	0.1%
E_e uncertainty	0.1%
RDC uncertainty	<0.1%

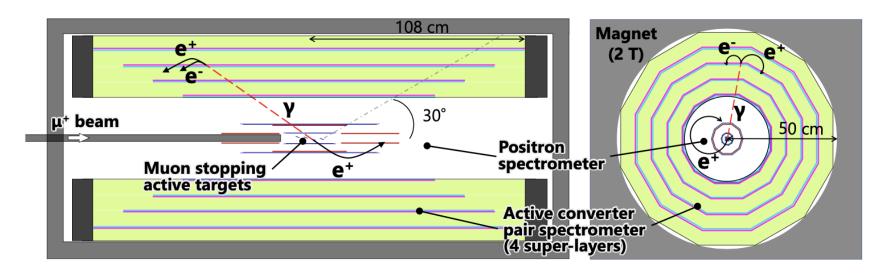
- overall effect on sensitivity $\sim 3\%$
 - used to be 13% in MEG-I

MEG-II, present and (near) future


- Results (based on 2021+2022 data)
 - B($\mu \rightarrow e \gamma$) sensitivity @ 90% CL = 2.2 x 10⁻¹³
 - Upper limit

$$= 1.5 \times 10^{-13}$$

(2.4 times better than MEG-I with only 8 months data taking)


- Projection (up to the end of 2026 run)
 - final expected sensitivity = 6×10^{-14}

MEG II expected sensitivity

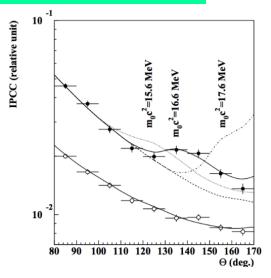
What next?

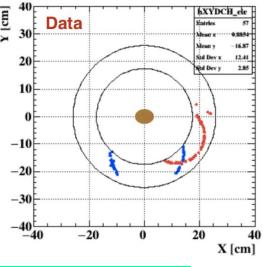
- Study group for "Future μ→eγ experiments" been established
 input to European Strategy for Particle Physics submitted (http://arxiv.org/abs/2503.22461v1)
- New detector concept conceived to cope with much higher HIPA intensity
- Both e^+ and γ -detectors embedded in the same (higher acceptance) magnetic spectrometer
 - inner side: silicon pixel detectors equipped with HVMAPS (similar approach as Mu3e) for positron tracking
 - outer side: pair production in active γ -converters (LYSO?) so as to compensate for energy straggling

Other "exotic" searches

- X₁₇
- ALPs

X₁₇ (i.e. Atomki anomaly)

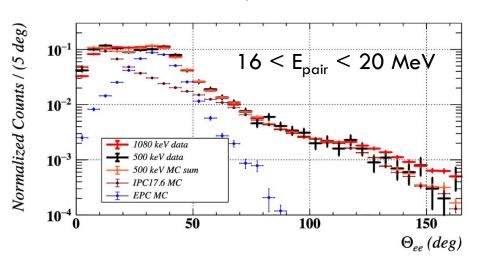

Who ordered that?

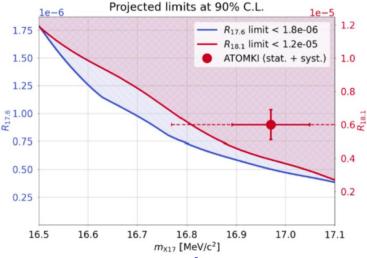

(see A.J. Krasznahorkay et al., PRL 116 (2016) 042501)

- excess of e⁺e⁻ pairs in Atomki in ⁷Li(p,e⁺e⁻)⁸B
 - observed at $E_p = 1030 \text{ keV}$ (Q=18.1 MeV)
 - no evidence at $E_p = 440 \text{ keV} (17.6 \text{ MeV})$
- interpreted as a production of a X boson (mediator of the fifth force?) with $m_X = 16.95$ MeV and $\Gamma(X)/\Gamma(\gamma) = 6 \times 10^{-6}$
- same anomaly seen in ³H(p,e⁺e⁻)⁴He and ¹¹B(p,e⁺e⁻)¹²C
 (PRC 104 (2021) 044003, PRC 106 (2022) L061601)

MEG-II capability

- reproduced by using CW accelerator (usually a facility for calibration) to deliver protons to a dedicated Li-target
- signal: e^+e^- reconstructed in the magnetic spectrometer with downscaled magnetic field, wider acceptance and better pair invariant mass resolution ($\sigma(m_{ee}) = 540 \text{ keV}$)
- background: internal (IPC) or external (EPC) pair conversion



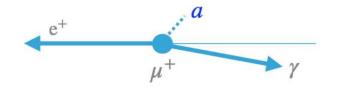


X₁₇, data and results

Data set

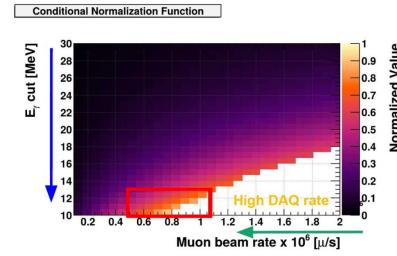
- 4 weeks in February 2023 at the same proton energy ($E_p = 1030 \text{ keV}$)
- excitation of both 8 Be resonances (17.6, 18.1 MeV) due to $\sim 25\%$ H₂⁺ beam content
- 75 Mevents collected, 500 kevents with reconstructed e⁺e⁻ pairs

- angular distribution compatible with the background for both resonances ightarrow exclusion plot
- published results still compatible with Atomki results at $\sim 1.5\sigma$ ($\sim 6\%$ probability) (EPJ C85 (2025)763)
- results from PADME collaboration compatible with background as well, with a most significant deviations ($\sim 2\sigma$) at $\sqrt{s} \approx 16.9 \text{MeV}$ (F. Bossi et al., JHEP 11 (2025) 007)
- plans to continue X₁₇ data taking during the next HIPA shutdown 2026 with pure 18.1 MeV sample

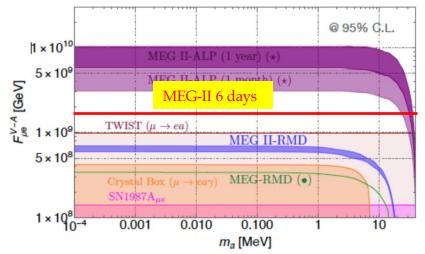

24

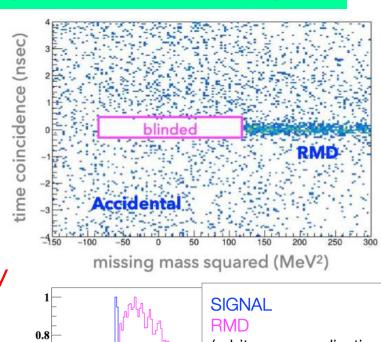
Search for $\mu \rightarrow ea\gamma$

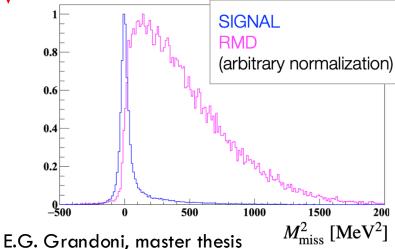
 Predicted in several Beyond Standard Model scenarios


a = ALP = axion-like particle (i.e. pseudo Goldstone boson from spontaneous symmetry breaking of global symmetries) following suggestions from

Jho, Knapen & Redigolo, JHEP 10 (2022) 029)


Signature


- 3-body decay ($e^+ + \gamma$ + invisible) (very similar to radiative muon decays)
- simultaneous e^+ and γ detection
- looser momentum/energy cuts ($E_{\gamma} > 10 \text{ MeV}$)
- no angular correlation required
- need to operate the beam at quite lower intensi $(\lesssim 10^6/\text{s})$ in order to keep the trigger rate at c tolerable level



Data set and analysis strategy

- 6-days run at $10^6/s$ intensity cumulated in 2021+2022
- search for
 - timing coincidencies
 - → accidental background suppression
 - peaked missing mass distribution
 - → RMD background suppression
- sensitivity (based on toy-MC): 1.13x10⁹ GeV

Conclusions

• $\mu \rightarrow e \gamma$

- MEG-II latest results (based on 2021+2022) are consistent with null result and set an upper limit at 1.5×10^{-13} (@90% CL) to the branching ratio
- analysis of 2023 data and 2025 run ongoing so as to reach (with 2026 run) a sensitivity of 6×10^{-14} (10 times as low as former MEG-I limits)

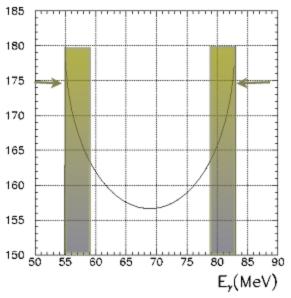
Exotics

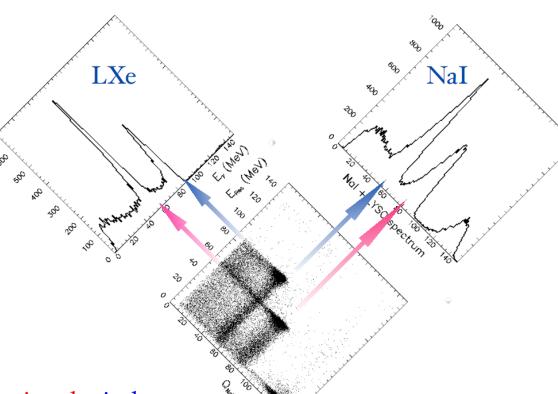
- X_{17} : no excess seen over background, still 1.5 σ compatibility with Atomki new run envisaged after 2026 shutdown
- ALP: dedicated 6d-run at low intensity, should be able to push sensitivity down to current TWIST limit
- Still vast discovery potential...
 - ... so please, stay tuned!

Backup slides

Likelihood fit

 Frequentist approach based on Feldman-Cousins prescriptions with profile likelihood ratio ordering


$$\mathcal{L}(\vec{x}_{1},...,\vec{x}_{n},R_{\diamond},A_{\diamond}|,\hat{S},\hat{R},\hat{A}) = \frac{e^{-\hat{N}}}{\hat{N}}e^{-\frac{1}{2}\frac{(A_{\diamond}-\hat{A})^{2}}{\sigma_{A}^{2}}}e^{-\frac{1}{2}\frac{(R_{\diamond}-\hat{R})^{2}}{\sigma_{R}^{2}}}\prod_{i=1}^{N}\left(\hat{S}s(\vec{x}_{i}) + \hat{R}r(\vec{x}_{i}) + \hat{A}a(\vec{x}_{i})\right)$$


$$egin{aligned} LR_p(N_{ ext{sig}}) = \ &rac{\max_{N_{ ext{BG}},N_{ ext{RMD}}} \mathcal{L}(N_{ ext{sig}},N_{ ext{BG}},N_{ ext{RMD}})}{\max_{N_{ ext{sig}},N_{ ext{BG}},N_{ ext{RMD}}} \mathcal{L}(N_{ ext{sig}},N_{ ext{BG}},N_{ ext{RMD}})}. \end{aligned}$$

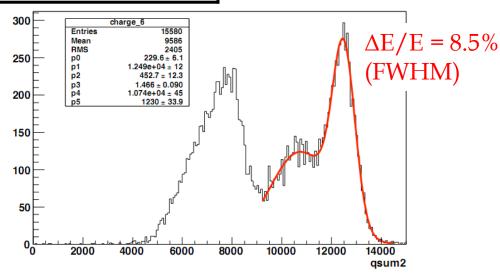
- Observables
 - kinematics (\overrightarrow{x}_i
 - event counts in the sidebands R , A
- Parameters
 - number of signal and background events
 - nuisance parameters added to take systematics into account

γ from π -CEX

$$\pi^- p \to \pi^0 n$$
$$\pi^0 \to \gamma \gamma$$

- E_{γ} = 55 (83) MeV \rightarrow close to signal window
- liquid H-target
- beam polarity and settings to be changed as well
 - \rightarrow to be used quite seldom (~1/year)

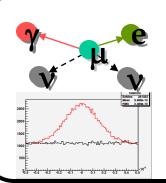
(p,γ) reactions


 Makes us of a Cockcroft-Walton accelerator to deliver tunableenergy protons to a Li₂B₄O₇ target

- Li: high rate, higher energy photon

- B: two (lower energy) time-coincident photons

Reaction	E_{res}	σ_{res}	γ-lines
Li(p,γ)Be	440 keV	5 mb	(17.6, 14.6) MeV
$B(p,\gamma)C$	163 keV	2 10 ⁻¹ mb	(4.4, 11.7, 16.1) MeV

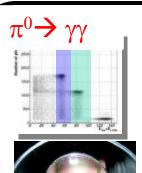


>16.1 MeV

>11.7 MeV

4.4 MeV

Calibration tools



Lower beam intensity $< 10^7$

Is necessary to reduce pileups

Better σ_t , makes it possible to take data with higher beam intensity

A few days ~ 1 week to get enough statistics

 $\pi^- + p \rightarrow \pi^0 + n$

 $\pi^0 \rightarrow \gamma \gamma$ (55MeV, 83MeV)

$$\pi^- + p \rightarrow \gamma + n (129 \text{MeV})$$

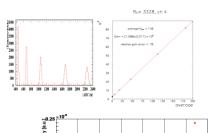
10 days to scan all volume precisely

(faster scan possible with less points) e^+

Laser

(rough) relative timing calib.

< 2~3 nsec



MEG detector

standard

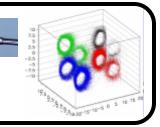
calibrations

LED

PMT Gain

Higher V with light att.

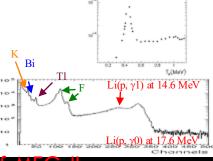
Can be repeated frequently


Attenuation

alpha

PMT QE & Att. L

Cold GXe

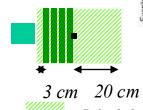

LXe

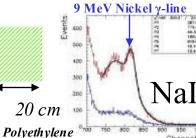
Attenuation

 (p, γ) reactions

Li(p,γ)Be

LiF target at COBRA center


17.6MeV γ


~daily calib.

Can be used also for initial setup

 (n,γ) on Ni

Neutron pulsed generator to induce (n, γ)

0.25 cm Nickel plate