# Status of MUonE theory

#### F. Piccinini



INFN, Sezione di Pavia and Galileo Galilei Institute (Italy)

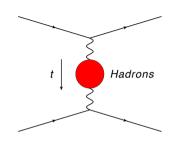
#### MPP2025: IV Workshop on Muon Precision Physics 2025

Leverhulme Trust, The Spine, Liverpool, 11-14 November 2025












- G. Abbiendi, C.M. Carloni Calame, U. Marconi, C. Matteuzzi, G. Montagna, O. Nicrosini, M. Passera, F. Piccinini, R. Tenchini, L. Trentadue, G. Venanzoni,
   Measuring the leading hadronic contribution to the muon g-2 via μe scattering
   Eur. Phys. J. C 77 (2017) no.3, 139 arXiv:1609.08987 [hep-ph]
- ★ C. M. Carloni Calame, M. Passera, L. Trentadue and G. Venanzoni, A new approach to evaluate the leading hadronic corrections to the muon g-2 Phys. Lett. B 746 (2015) 325 - arXiv:1504.02228 [hep-ph]

#### Master formula

$$a_{\mu}^{\mathrm{HLO}} = \frac{\alpha}{\pi} \int_{0}^{1} dx \left(1 - x\right) \Delta \alpha_{\mathrm{had}}[t(x)]$$
 
$$t(x) = \frac{x^{2} m_{\mu}^{2}}{x - 1} < 0$$



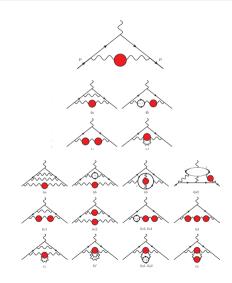
e.a. Lautrup, Peterman, De Rafael, Phys. Rept. 3 (1972) 193

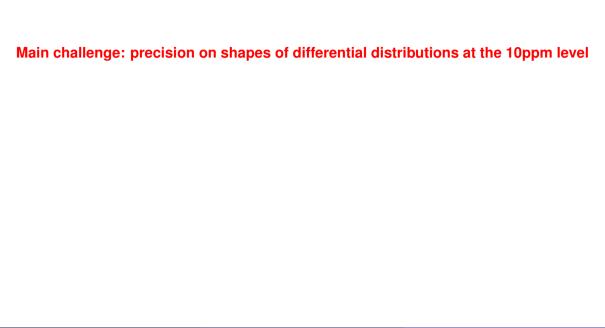
- The hadronic VP correction to the running of  $\alpha$  enters
- $\Delta \alpha_{\rm had}(t)$  can be directly measured in a (single) experiment involving a space-like scattering process and  $\mathbf{a}_{u}^{\mathrm{HLO}}$  obtained through numerical integration Carloni Calame, Passera, Trentadue, Venanzoni PLB 746 (2015) 325

\* A data-driven evaluation of  $a_{\mu}^{\text{HLO}}$ , but with space-like data

# Kernel functions for $\mathbf{a}_{\mu}^{\mathbf{HVP}}$

- LO:  $\frac{\alpha}{\pi}(1-x)$
- NLO


E. Balzani, S. Laporta, M. Passera, Phys. Lett. B834 (2022) 137462


A.V. Nesterenko, J. Phys. G49 (2022) 5, 055001;

J. Phys. G50 (2022) 2, 029401

#### NNLO

E. Balzani, S. Laporta, M. Passera, Phys. Lett. B834 (2022) 137462





Main challenge: precision on shapes of differential distributions at the 10ppm level

Main sources of systematics on the theory side

ullet Radiative corrections to the Signal, the elastic process  $\mu e 
ightarrow \mu e$ 

#### Main challenge: precision on shapes of differential distributions at the 10ppm level

Main sources of systematics on the theory side

ullet Radiative corrections to the Signal, the elastic process  $\mu e 
ightarrow \mu e$ 

Predictions for Background processes

#### Main challenge: precision on shapes of differential distributions at the 10ppm level

Main sources of systematics on the theory side

ullet Radiative corrections to the Signal, the elastic process  $\mu e 
ightarrow \mu e$ 

Predictions for Background processes

**High precision Monte Carlo simulation tools required** 

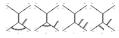
## Two completely independent fixed order Monte Carlo codes under development

• Mesmer

Pavia team

• approximate NNLO calculation at  $\mathcal{O}\left(\left[\frac{\alpha}{\pi}\ln\frac{m_{\mu}^2}{m_e^2}\right]^2\right)$ 

github.com/cm-cc/mesmer


- McMule
  PSI/Bern/Liverpool...
  - $\bullet$  more refined approximation to NNLO: only terms of  $\mathcal{O}(m_e^2/Q^2)$  neglected

gitlab.com/mule-tools/mcmule

#### approximate photonic radiative corrections at NNLO in Mesmer

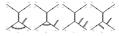
exact calculation of corrections along one lepton line with all finite mass effects





 two independent calculations, with different IR singularities handling procedures (slicing (Mesmer) and subtraction McMule))

Carloni Calame et al., JHEP 11 (2020) 028,


P. Banerjee, T. Engel, A. Signer, Y. Ulrich, SciPost Phys. 9 (2020) 027

• implemented in Mesmer and McMule, perfect numerical agreement

#### approximate *photonic* radiative corrections at **NNLO** in **Mesmer**

exact calculation of corrections along one lepton line with all finite mass effects






 two independent calculations, with different IR singularities handling procedures (slicing (Mesmer) and subtraction McMule))

Carloni Calame et al., JHEP 11 (2020) 028,

P. Banerjee, T. Engel, A. Signer, Y. Ulrich, SciPost Phys. 9 (2020) 027

- implemented in Mesmer and McMule, perfect numerical agreement
- NNLO with finite mass effects and approximate up-down interference in Mesmer
  - interference of LO  $\mu e \rightarrow \mu e$  amplitude with



NNLO double-virtual amplitudes where at least 2 photons connect the e and  $\mu$  lines are approximated according to the Yennie-Frautschi-Suura ('61) formalism, starting from the exact one-loop, to catch the IR divergent structure

#### photonic radiative corrections at NNLO in McMule

• NNLO calculation neglecting terms of  $\mathcal{O}(m_e^2/Q^2)$  in <code>McMule</code>

A. Broggio et al., JHEP 01 (2023) 112

#### photonic radiative corrections at NNLO in McMule

ullet NNLO calculation neglecting terms of  $\mathcal{O}(m_e^2/Q^2)$  in <code>McMule</code>

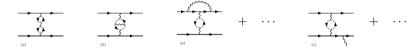
A. Broggio et al., JHEP 01 (2023) 112

- this is based on several achievements
  - ullet complete calculation of the amplitude  $f^+f^- o F^+F^-$  with  $m_f=0$ ,  $m_F
    eq 0$
  - "massification" to recover the leading  $m_e$  terms, i.e. neglecting powers of  $m_e^2/Q^2$

T. Engel, C. Gnendiger, A. Signer and Y. Ulrich, JHEP 02 (2019) 118

Y. Ulrich, PoS RADCOR2023 (2024) 077

FKS<sup>ℓ</sup> subtraction scheme


T. Engel, A. Signer, Y. Ulrich, JHEP 01 (2020) 085

 Next-to-soft stabilisation, to obtain numerical stability in real-virtual corrections with soft and/or collinear photon configurations

T. Engel, A. Signer, Y. Ulrich, JHEP 04 (2022) 097; T. Engel, JHEP 07 (2023) 177

#### **NNLO** virtual leptonic and hadronic pairs (vacuum polarization insertion)

- any lepton (and hadron) in the VP blobs
- interfered with  $\mu e \rightarrow \mu e$  or  $\mu e \rightarrow \mu e \gamma$  amplitudes



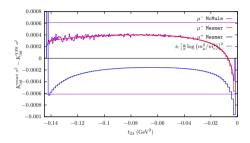
• interfered with  $\mu e 
ightarrow \mu e$  amplitude



• 2-loop integral evaluated with dispersion relation techniques in Mesmer

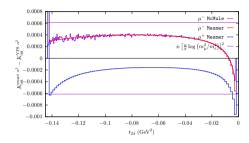
used e.g. in the past for Bhabha: Actis et al., Phys. Rev. Lett. 100 (2008) 131602; Carloni Calame et al., JHEP 07 (2011) 126

$$\frac{g_{\mu\nu}}{q^2+i\epsilon} \rightarrow g_{\mu\nu} \frac{\alpha}{3\pi} \int_{4m_\ell^2}^{\infty} \frac{dz}{z} \frac{R_\ell(z)}{q^2-z+i\epsilon} = g_{\mu\nu} \frac{\alpha}{3\pi} \int_{4m_\ell^2}^{\infty} \frac{dz}{z} \frac{1}{q^2-z+i\epsilon} \left(1 + \frac{4m_\ell^2}{2z}\right) \sqrt{1 - \frac{4m_\ell^2}{z^2}} = \frac{1}{2\pi} \left(1 + \frac{4m_\ell^2}{z^2}\right) \sqrt{1 - \frac{4m_\ell^2}{z^2}} = \frac{1}{2\pi} \left(1 + \frac$$


• also independent investigation for hadronic corrections to  $\mu e$  scattering

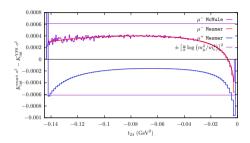
M. Fael and M. Passera, Phys. Rev. Lett. 2019 19, 192001

2-loop integral evaluated (also) with hyperspherical method in McMule


M. Fael, JHEP02 (2019) 027

### On the phenomenological side

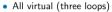



• agreement (for the up-down (photonic) interference) within the estimated uncertainties

### On the phenomenological side



- agreement (for the up-down (photonic) interference) within the estimated uncertainties
- NNLO corrections at the  $10^{-4} 10^{-3}$  level
- eventually fixed order calculations need to be matched to resummation of higher order corrections, through PS techniques (e.g. BaBayaga) or YFS techniques (e.g. KKMC/SHERPA)


### On the phenomenological side



- agreement (for the up-down (photonic) interference) within the estimated uncertainties
- NNLO corrections at the  $10^{-4} 10^{-3}$  level
- eventually fixed order calculations need to be matched to resummation of higher order corrections, through PS techniques (e.g. BaBayaga) or YFS techniques (e.g. KKMC/SHERPA)
- also next perturbative order should be estimated

#### Towards N<sup>3</sup>LO on the electron line

Y. Ulrich, N<sup>3</sup>LO kick-off workstop/thinkstart, Durham, 3-5 August 2022





Single real emission (two loops)



• Double real emission (one loops)



Triple real



M. Fael, MUonE Collaboration Meeting, 16/05/2023, CERN

 this contribution will allow improved perturbative predictions and more reliable theoretical uncertainty estimates

#### **Recent progress**

the three-loop form factor with finite fermion mass is now available

M. Fael, F. Lange, K. Schönwald, M. Steinhauser, Phys. Rev. Lett 128 (2022) 172003
M. Fael, F. Lange, K. Schönwald, M. Steinhauser, Phys. Rev.D 106 (2022) 034029

M. Fael, F. Lange, K. Schönwald, M. Steinhauser, Phys. Rev.D 107 (2023) 094017

all order subtraction scheme FKS<sup>ℓ</sup> availale

T. Engel, A. Signer, Y. Ulrich, JHEP 01 (2020) 085

generalisation of the LBK theorem to multi-photon emission 

extension of next-to-soft stabilisation to multiple radiation

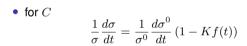
T. Engel, JHEP 03 (2024) 004

ullet real-virtual-virtual corrections recently recalculated with  $m_e o 0$ 

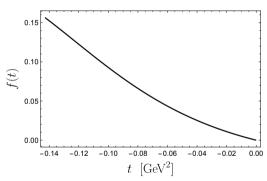
S. Badger, J. Krys, R. Moodle, S. Zoia, JHEP 11 (2023) 041

V.S. Fadin, R.N. Lee, JHEP 11 (2023) 148

• helicity amplitudes in massless QED to higher orders in  $\epsilon$ 


T. Dave, W.J. Bobadilla, Phys. Rev. D111 (2025) 036024



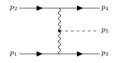

### Fixed target experiment $\Longrightarrow$ bound electron effects

estimated

R. Plestid and M.B. Wise, Phys.Rev.D 110 (2024), 056032



•  $K = 4.5 \cdot 10^{-4}$ , scaling as  $1/Z_A$ 

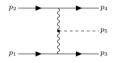



• preliminary investigations of the interactions between outgoing electrons and the residual charged debris in the final state

R. Plestid and M.B. Wise, Phys. Rev. D110 (2024), 113007

#### **Backgrounds**

- pion pair production forbidden kinematically with the available  $\sqrt{s}$
- single  $\pi^0$  production possible



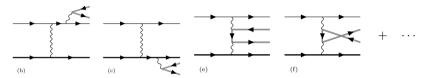

•  $\pi^0$  production calculated and shown to be well below  $10^{-5}$  w.r.t.  $\mu e o \mu e$ 

E. Budassi et al., PLB 829 (2022) 137138

#### **Backgrounds**

- pion pair production forbidden kinematically with the available  $\sqrt{s}$
- single  $\pi^0$  production possible




•  $\pi^0$  production calculated and shown to be well below  $10^{-5}$  w.r.t.  $\mu e \to \mu e$ 

E. Budassi et al., PLB 829 (2022) 137138

- lepton pair production
  - $\mu^{\pm}e^{-} \rightarrow \mu^{\pm}e^{-}\ell^{+}\ell^{-}$   $\mu^{\pm}N \rightarrow \mu^{\pm}N\ell^{+}\ell^{-}$

  - they can mimic the signal if one or two leptons are missed (or overlap)

• it also contributes at NNLO accuracy w.r.t.  $\mu e \rightarrow \mu e$ 



• the emission of an extra electron pair  $\mu e \to \mu e \ e^+ e^-$  is potentially a dramatically large background, because of the presence of "peripheral" diagrams which develop powers of collinear logarithms upon integration

G. Racah, Il Nuovo Cimento 14 (1937) 83-113; L.D. Landau, E.M. Lifschitz, Phys. Z. Sowjetunion 6 (1934) 244; H.J. Bhabha, Proc. Roy. Soc. Lond. A152 (1935) 559;

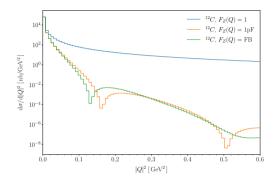
R.N. Lee, A.A. Lyubyakin, V.A. Smirnov, Phys. Lett. B 848 (2024) 138408

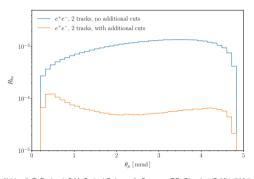
•  $\mu^\pm e^- o \mu^\pm e^- \ell^+ \ell^-$  calculated with finite mass effects and implemented in Mesmer

# Real pair emission from scattering on nucleus: $\mu^\pm N o \mu^\pm N \ell^+ \ell^-$

G. Abbiendi et al., Phys. Lett B854 (2024) 138720

- ullet cross section scaling  $\sim Z^2$
- approximation: scattering on the external nucleus field
- · finite extension of the nucleus through a form factor


$$F_Z(q) = \frac{1}{Ze} \int_0^\infty dr \, r^2 \rho_Z(r) \frac{\sin(qr)}{qr}$$


- q: momentum transferred to the nucleus
- ullet  $ho_Z$  : nuclear charged density
- different models for charge density

J. Heeck, R. Szafron, Y. Uesaka, PRD 105 (2022) 053006



#### Background/signal ratio





G. Abbiendi, E. Budassi, C.M. Carloni Calame, A. Gurgone, F.P., Phys.Lett.B 854 (2024) 138720



## For a safe background subtraction

QED corrections to lepton pair production will be important

#### For a safe background subtraction

QED corrections to lepton pair production will be important

ullet Interaction with an additional nucleus is of the same order, enhanced by Z



### Possible New Physics contamination in the $\Delta \alpha(t)$ determination?

A. Masiero, P. Paradisi and M. Passera, Phys. Rev. D102 (2020) 075013

P.S.B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, JHEP 05 (2020) 053

- Effects of heavy  $(M_{NP}\gg 1~{\rm GeV})$  NP mediators investigated through EFT with dim-6 operators
  - excluded (at the  $10^{-5}$  level) by existing data
- Effects of **light**  $(M_{NP} \le 1 \text{ GeV})$  NP mediators investigated with spin-dependent general models
  - spin—0 NP mediators (ALPs)
  - spin-1 NP mediators (Dark Photons, light Z' vector bosons)
  - excluded (at the  $10^{-5}$  level) by existing data

### Possible New Physics contamination in the $\Delta \alpha(t)$ determination?

A. Masiero, P. Paradisi and M. Passera, Phys. Rev. D102 (2020) 075013

P.S.B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, JHEP 05 (2020) 053

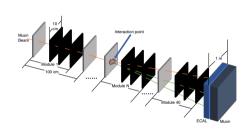
- Effects of heavy  $(M_{NP} \gg 1 \text{ GeV})$  NP mediators investigated through EFT with dim-6 operators
  - excluded (at the  $10^{-5}$  level) by existing data
- Effects of **light**  $(M_{NP} \le 1 \text{ GeV})$  NP mediators investigated with spin-dependent general models
  - spin—0 NP mediators (ALPs)
  - spin-1 NP mediators (Dark Photons, light Z' vector bosons)
  - excluded (at the  $10^{-5}$  level) by existing data

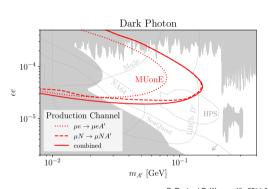
HVP determination with MUonE data will be robust against New Physics

### Possible New Physics studies with MUonE (in complementary regions to $\Delta \alpha_h$ )

- interesting proposals for NP searches at MUonE (new light mediators) in  $2 \to 3$  processes
  - invisibly decaying light Z' in  $\mu e \to \mu e Z'$

Asai et al., Phys. Rev. D106 (2022) 5


- a relevant background can be  $\mu e o \mu e \pi^0$ , in addition to  $\mu e o \mu e \gamma$
- long-lived mediators with displaced vertex signatures  $\mu e \to \mu e A' \to \mu e e^+ e^-$


Galon et al., Phys.Rev.D 107 (2023) 095003; G. Krnjaic, D. Rocha, I.R. Wang, Phys. Rev. Lett. 134 (2025) 161801

• through scattering off the target nuclei  $\mu N o \mu N X o \mu N e^+ e^-$ 

Grilli di Cortona and E. Nardi, Phys. Rev. D105 (2022) L111701; D. Rocha, I.R. Wang, arXiv:2511.03222

#### **Example of potential reach in dark photon searches**





D. Rocha, I.R. Wang, arXiv:2511.03222

- Given its precision requirements, MUonE represents a challenge (on the theory side) for
  - QED corrections
  - background calculation
- at present we have two independent Monte Carlo tools, Mesmer and McMule featuring
  - NLO QED corrections
  - NNLO QED corections from single lepton legs
  - YFS inspired approximation to the full NNLO QED in Mesmer
  - full NNLO QED with electron "massification" in McMule
  - pair production in Mesmer
    - $\mu^{\pm}e^{-} \to \mu^{\pm}e^{-}\ell^{+}\ell^{-}$
    - $\mu^{\pm}N \rightarrow \mu^{\pm}N\ell^{+}\ell^{-}$

- Given its precision requirements, MUonE represents a challenge (on the theory side) for
  - QED corrections
  - background calculation
- at present we have two independent Monte Carlo tools, Mesmer and McMule featuring
  - NLO QED corrections
  - NNLO QED corections from single lepton legs
  - YFS inspired approximation to the full NNLO QED in Mesmer
  - full NNLO QED with electron "massification" in McMule
  - pair production in Mesmer
    - $\mu^{\pm}e^{-} \rightarrow \mu^{\pm}e^{-}\ell^{+}\ell^{-}$
    - $\mu^{\pm}N \rightarrow \mu^{\pm}N\ell^{+}\ell^{-}$
- enough to study the pre- LHC LS data

- Given its precision requirements, MUonE represents a challenge (on the theory side) for
  - QED corrections
  - background calculation
- at present we have two independent Monte Carlo tools, Mesmer and McMule featuring
  - NLO QED corrections
  - NNLO QED corections from single lepton legs
  - YFS inspired approximation to the full NNLO QED in Mesmer
  - full NNLO QED with electron "massification" in McMule
  - pair production in Mesmer
    - $\mu^{\pm}e^{-} \rightarrow \mu^{\pm}e^{-}\ell^{+}\ell^{-}$
    - $\mu^{\pm}N \rightarrow \mu^{\pm}N\ell^{+}\ell^{-}$
- enough to study the pre- LHC LS data
- ongoing efforts towards N<sup>3</sup>LO and resummed multiphoton effects

- Given its precision requirements, MUonE represents a challenge (on the theory side) for
  - QED corrections
  - background calculation
- at present we have two independent Monte Carlo tools, Mesmer and McMule featuring
  - NLO QED corrections
  - NNLO QED corections from single lepton legs
  - YFS inspired approximation to the full NNLO QED in Mesmer
  - full NNLO QED with electron "massification" in McMule
  - pair production in Mesmer
    - $\mu^{\pm}e^{-} \rightarrow \mu^{\pm}e^{-}\ell^{+}\ell^{-}$
    - $\mu^{\pm}N \rightarrow \mu^{\pm}N\ell^{+}\ell^{-}$
- enough to study the pre- LHC LS data
- ongoing efforts towards N<sup>3</sup>LO and resummed multiphoton effects
- worth to study the potential for BSM searches

# **THANK YOU!**