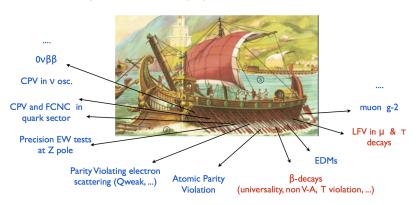
Theory review of Lepton Flavour Violation

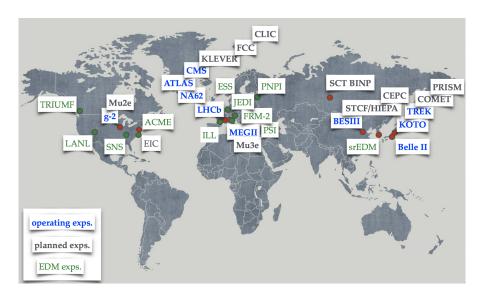
Paride Paradisi

University of Padova and INFN


Workshop on Muon Precision Physics, Liverpool, 13th November 2025

Plan of the talk

- Strategies to look for New Physics at low-energy
- 2 Current status of LFV
- **3** LFV from heavy NP
- EDMs, g-2 and LFV interrelationship
- **5** LFV from light NP
- 6 LFV @ FCC-ee & Muon Collider (MuC)
- Conclusions and future prospects


Where to look for New Physics at low-energy?

- Processes very suppressed or even forbidden in the SM
- Processes predicted with high precision in the SM

High-intensity frontier: A collective effort to determine the NP dynamics

Experimental status

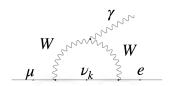
Experimental bounds

Process	Present	Experiment	Future	Experiment
$\mu o {f e} \gamma$	1.5×10^{-13}	MEG	$\approx 6 \times 10^{-14}$	MEG II
μo 3 e	1.0×10^{-12}	SINDRUM	$pprox 10^{-16}$	Mu3e
μ^- Au $ ightarrow$ e^- Au	7.0×10^{-13}	SINDRUM II	?	
μ^- Ti $ ightarrow$ e^- Ti	4.3×10^{-12}	SINDRUM II	?	
μ^- Al $ ightarrow$ e $^-$ Al	_		$pprox 10^{-16}$	COMET, MU2e
$ au o {m e}\gamma$	3.3×10^{-8}	Belle & BaBar	$\sim 10^{-9}$	Belle II
$ au o \mu \gamma$	4.4×10^{-8}	Belle & BaBar	$\sim 10^{-9}$	Belle II
au o 3e	2.7×10^{-8}	Belle & BaBar	$\sim 10^{-10}$	Belle II
$ au o 3\mu$	2.1×10^{-8}	Belle & BaBar	$\sim 10^{-10}$	Belle II
$d_e({ m e~cm})$	1.1×10^{-29}	ACME	$\sim 3 imes 10^{-31}$	ACME III
$d_{\mu}({ m e~cm})$	1.8×10^{-19}	Muon (g-2)	$\sim 10^{-22}$	PSI

Table: Present and future experimental sensitivities for relevant low-energy observables.

- So far, only upper bounds. Still excellent prospects for exp. improvements.
- We can expect a NP signal in all above observables below the current bounds.

Charged LFV in the SM


- GIM mechanism very effective in LFV transitions
- amplitude proportional to $A(\mu \to e\gamma) \propto m_{\nu}^2$

Very small !!!

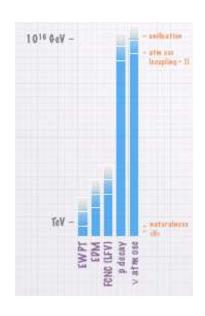
$$BR(\mu \to e\gamma) \simeq \frac{\Gamma(\mu \to e\gamma)}{\Gamma(\mu \to e\nu\bar{\nu})} = \frac{3\alpha}{32\pi} \left| \sum_{k=1,3} \frac{U_{\mu k} U_{ek}^* m_{\nu_k}^2}{M_W^2} \right|^2.$$

$$BR(\mu \to e\gamma) = 10^{-55} \div 10^{-54}$$

• similar suppressions for $\mu \to 3e, \tau \to 3\mu, \mu \to e, ...$

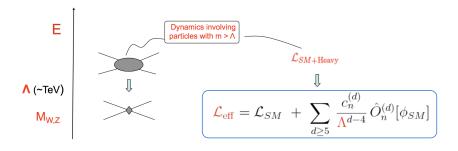
Why flavor violation is visible in neutrino oscillation while it's not in charged LFV? The uncertainty principle sets the oscillation time for $\mu \to e\gamma$ to be $t \sim h/M_W!$

Message: Any evidence for LFV would be an unambiguous signal of NP!

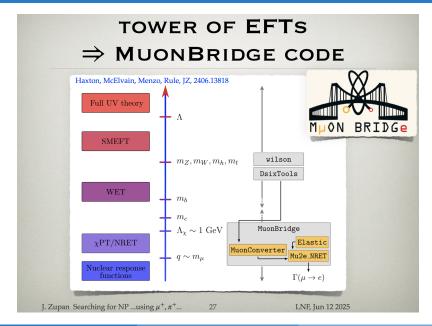

Why do we need New Physics (NP)?

- Gravity $\Longrightarrow \Lambda_{Planck} \sim 10^{18-19} \; \mathrm{GeV}$
- Neutrino masses $\implies \Lambda_{\text{see-saw}} \lesssim 10^{15} \; \mathrm{GeV}$
- BAU: evidence of CPV beyond SM
 - ► Electroweak Baryogenesis $\Longrightarrow \Lambda_{NP} \lesssim \text{TeV}$
 - ▶ Leptogenesis $\Longrightarrow \Lambda_{\text{see}-\text{saw}} \lesssim 10^{15} \; \mathrm{GeV}$
- Dark Matter (WIMP) $\Longrightarrow \Lambda_{NP} \lesssim \text{TeV}$
- Hierarchy problem: $\implies \Lambda_{NP} \lesssim {\rm TeV}$

SM = effective theory at the EW scale


$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{d \geq 5} \frac{\textit{c}_{ij}^{(d)}}{\textit{N}_{NP}^{d-4}} \; \textit{O}_{ij}^{(d)}$$

- $\mathcal{L}_{\mathrm{eff}}^{d=5} = \frac{y_{\nu}^{ij}}{\Lambda_{\mathrm{see-saw}}} L_i L_j \phi \phi$,
- $\mathcal{L}_{\text{eff}}^{d=6}$ generates FCNC operators


EFT approach to heavy NP

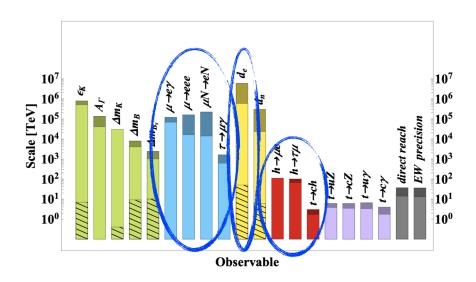
ullet Dynamics below the scale Λ [\sim mass of new particles] is described by $L_{
m eff}$

- L_{eff} is built out of relevant low-energy degrees of freedom (SM fields)
- ▶ $L_{\rm eff}$ respects the SM gauge symmetries $G_{\rm SM} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$
- $ightharpoonup L_{\rm eff}$ is organized in inverse powers of Λ (amplitudes suppressed by powers of E/Λ)
- Experiments at the precision frontier probe energy scale Λ and symmetries of the new interactions (coeff. & structure of Ô_n^(d))

MuonBridge: a $\mu \rightarrow e$ conversion in Nuclei code

EFT approach to LFV

4-leptons operators		Dipole operators	
$egin{array}{c} Q_{\ell\ell} \ Q_{ee} \ Q_{\ell e} \end{array}$	$egin{array}{c} (ar{L}_L\gamma_\mu L_L)(ar{L}_L\gamma^\mu L_L) \ (ar{e}_R\gamma_\mu e_R)(ar{e}_R\gamma^\mu e_R) \ (ar{L}_L\gamma_\mu L_L)(ar{e}_R\gamma^\mu e_R) \end{array}$	$Q_{eW} \ Q_{eB}$	$(ar{L}_L \sigma^{\mu u} e_R) au_I \Phi W^I_{\mu u} onumber \ (ar{L}_L \sigma^{\mu u} e_R) \Phi B_{\mu u}$


2-lepton 2-quark operator

$Q_{\ell q}^{(1)}$	$(ar{L}_L\gamma_\mu L_L)(ar{Q}_L\gamma^\mu Q_L)$	$Q_{\ell u}$	$(ar{L}_L\gamma_\mu L_L)(ar{u}_R\gamma^\mu u_R)$
$Q_{\ell q}^{(3)}$	$(\bar{L}_L \gamma_\mu au_I L_L)(\bar{Q}_L \gamma^\mu au_I Q_L)$	Q_{eu}	$(ar{e}_R\gamma_\mu e_R)(ar{u}_R\gamma^\mu u_R)$
Q_{eq}	$(ar{e}_R \gamma^\mu e_R) (ar{Q}_L \gamma_\mu Q_L)$	$Q_{\ell edq}$	$(ar{L}_L^a e_R)(ar{d}_R Q_L^a)$
$Q_{\ell d}$	$(ar{L}_L\gamma_\mu L_L)(ar{d}_R\gamma^\mu d_R)$	$Q_{\ell equ}^{(1)}$	$(ar{L}_L^a e_R) \epsilon_{ab} (ar{Q}_L^b u_R)$
Q_{ed}	$(ar{e}_R\gamma_\mu e_R)(ar{d}_R\gamma^\mu d_R)$	$Q_{\ell equ}^{(3)}$	$(ar{L}_i^a\sigma_{\mu u}e_R)\epsilon_{ab}(ar{Q}_L^b\sigma^{\mu u}u_R)$

Lepton-Higgs operators

$$\mu \to e \gamma$$
 $\mu \to 3e$ $\mu \to e$

Bounds on the NP scale

[Physics Briefing Book, 1910.11775]

Correlating LFV signals

LFV operators @ dim-6

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda_{\text{LFV}}^2} \, \mathcal{O}^{\text{dim}-6} + \dots \, .$$

$$\mathcal{O}^{\dim-6} \ni \ \bar{\mu}_{\text{R}} \, \sigma^{\mu\nu} \, \text{HeLF}_{\mu\nu} \, , \ (\bar{\mu}_{\text{L}} \gamma^{\mu} e_{\text{L}}) \left(\bar{\textit{f}}_{\text{L}} \gamma^{\mu} \textit{f}_{\text{L}}\right) \, , \ (\bar{\mu}_{\text{R}} e_{\text{L}}) \left(\bar{\textit{f}}_{\text{R}} \textit{f}_{\text{L}}\right) \, , \ f = e, u, d$$

- $\ell \to \ell' \gamma$ probe ONLY the dipole-operator (at tree level)
- $\ell_i o \ell_j \bar{\ell}_k \ell_k$ and $\mu o e$ in Nuclei probe dipole and 4-fermion operators
- When the dipole-operator is dominant:

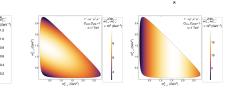
$$\begin{split} &\mathrm{BR}(\ell_i \to \ell_j \ell_k \overline{\ell}_k) \approx \alpha \times \mathrm{BR}(\ell_i \to \ell_j \gamma) \\ &\mathrm{CR}(\mu \to \boldsymbol{e} \text{ in N}) \approx \alpha \times \mathrm{BR}(\mu \to \boldsymbol{e} \gamma) \end{split}$$

$$\frac{\mathrm{BR}(\mu \to 3\mathrm{e})}{3\times 10^{-15}} \approx \frac{\mathrm{BR}(\mu \to \mathrm{e}\gamma)}{5\times 10^{-13}} \approx \frac{\mathrm{CR}(\mu \to \mathrm{e} \ \text{in} \ \text{N})}{3\times 10^{-15}}$$

- Ratios like $Br(\mu \to e\gamma)/Br(\tau \to \mu\gamma)$ probe the NP flavor structure
- Ratios like $Br(\mu \to e\gamma)/Br(\mu \to eee)$ probe the NP operator at work

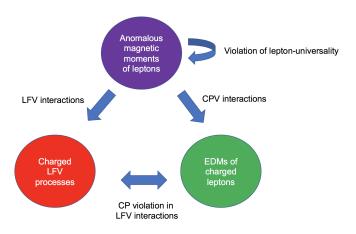
Polarising the muon to distinguish operators

Kuno, Okada hep-ph/9909265


$$\frac{dB\left(\mu \to e \gamma\right)}{d\left(\cos\theta_{e}\right)} = 192\pi^{2}\left(\frac{\nu}{\Lambda}\right)^{4}\left[\left|C_{D,R}\right|^{2}\left(1 - \frac{P_{\mu}\cos\theta_{e}}{\rho_{e}}\right) + \left|C_{D,L}\right|^{2}\left(1 + P_{\mu}\cos\theta_{e}\right)\right]$$
Muon polarization vector

Angle between e momentum and \overrightarrow{P}_{μ}

Petcov, Bolton 2204.03468


$$\frac{dB_{\mu\to 3e}}{dx_1dx_2d\Omega_e} = \frac{3}{2\pi} \frac{|C_1(x_1,x_2) + C_2(x_1,x_2)P_\mu\cos\theta_e + C_3(x_1,x_2)P_\mu\sin\theta_e\cos\phi_e + C_4(x_1,x_2)P_\mu\sin\theta_e\sin\phi_e]}{(2\pi)^{3}}$$
Can distinguish $C_{V,LX}$, $C_{V,LX}$, $C_{S,R}$ from $C_{V,RX}$, $C_{V,RX}$, $C_{V,LX}$, $C_{S,L}$ but not scalars from vectors CP asymmetries are also measureable (phase between dipoles and vectors)

• Dallitz plots for the three body also possible to distinguish operators (vector vs scalar)

Scalars

Probing NP in the leptonic sector

On leptonic dipoles: $\ell \to \ell' \gamma$

NP effects are encoded in the effective Lagrangian

$$\mathcal{L} = e \frac{m_\ell}{2} \left(\bar{\ell}_R \sigma_{\mu\nu} \frac{A_{\ell\ell'} \ell_L'}{A_{\ell\ell'}} + \bar{\ell}_L' \sigma_{\mu\nu} \frac{A_{\ell\ell'}^\star}{A_{\ell\ell'}^\star} \ell_R \right) F^{\mu\nu} \qquad \ell, \ell' = e, \mu, \tau \,, \label{eq:local_local_local_local}$$

▶ Branching ratios of $\ell \to \ell' \gamma$

$$\frac{\mathrm{BR}(\ell \to \ell' \gamma)}{\mathrm{BR}(\ell \to \ell' \nu_\ell \bar{\nu}_{\ell'})} = \frac{48 \pi^3 \alpha}{G_F^2} \Big(|A_{\ell\ell'}|^2 + |A_{\ell'\ell}|^2 \Big) \,.$$

 $ightharpoonup \Delta a_{\ell}$ and leptonic EDMs

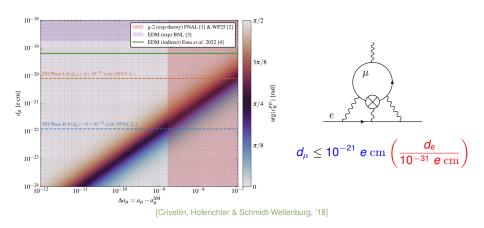
$$\Delta a_{\ell} = 2m_{\ell}^2 \operatorname{Re}(A_{\ell\ell}), \qquad \qquad \frac{d_{\ell}}{a} = m_{\ell} \operatorname{Im}(A_{\ell\ell}).$$

▶ "Naive scaling": a broad class of NP theories contributes to Δa_{ℓ} and d_{ℓ} as

$$rac{\Delta a_\ell}{\Delta a_{\ell'}} = rac{m_\ell^2}{m_{\ell'}^2}, \qquad \qquad rac{d_\ell}{d_{\ell'}} = rac{m_\ell}{m_{\ell'}}\,.$$

Model-independent predictions

• BR $(\ell_i
ightarrow \ell_j \gamma)$ vs. $(g-2)_\mu$


$$\begin{aligned} \mathrm{BR}(\mu \to \boldsymbol{e} \gamma) &\approx & 3 \times 10^{-13} \bigg(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\bigg)^2 \bigg(\frac{\theta_{e\mu}}{10^{-5}}\bigg)^2 \\ \mathrm{BR}(\tau \to \mu \gamma) &\approx & 4 \times 10^{-8} \bigg(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\bigg)^2 \bigg(\frac{\theta_{\mu\tau}}{10^{-2}}\bigg)^2 \end{aligned}$$

• EDMs vs. $(g-2)_{\mu}$

$$\begin{split} d_e & \simeq & \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 10^{-29} \left(\frac{\phi_e^{\text{CPV}}}{10^{-5}}\right) \; e \; \mathrm{cm} \,, \\ d_\mu & \simeq & \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 2\times 10^{-22} \; \phi_\mu^{\text{CPV}} \; \; e \; \mathrm{cm} \,, \end{split}$$

- Main messages:
 - ho $\Delta a_{\mu} pprox (3\pm1) imes 10^{-9}$ requires a nearly flavor and CP conserving NP
 - ightharpoonup Large effects in the muon EDM $d_{\mu} \sim 10^{-22}~e~\mathrm{cm}$ are still allowed!

Experimental status of the muon EDM



$$d_{\mu} \quad \simeq \quad \left(\frac{\Delta a_{\mu}}{3\times 10^{-9}}\right)2\times 10^{-22}\;\phi_{\mu}^{\text{CPV}}\;\;e\;\mathrm{cm}\,,$$

[Giudice, PP & Passera, '12]

Many Options, Much Fun?

How do I make sense of the landscape of singlet options?

Flavoured Axion-like Portal

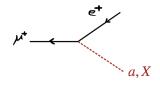
Accidental symmetries of the SM might be broken by light new particles feebly coupled to the SM

Example: Flavour dependent Peccei-Quinn charges

[Calibbi et al 1612.08040] [Ema et al 1612.05492]

 $U(3)_{u}$

 $U(3)_d$

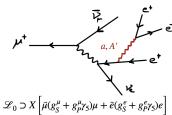

$$\mathcal{L}\supset \left(\sum_{i}^{\text{Flavour conserving}}\frac{\partial_{\mu}a}{2f_{a}}\bar{f}_{i}C_{ii}^{A}\gamma_{\mu}\gamma_{5}f_{i}\right) + \left(\sum_{i\neq j}^{A}\frac{\partial_{\mu}a}{2f_{a}}\bar{f}_{i}\gamma^{\mu}\left(C_{ij}^{V}+C_{ij}^{A}\gamma_{5}\right)f_{j}\right) + \sum_{i\neq j}^{Blavour violating}\left(C_{ij}^{V}+C_{ij}^{A}\gamma_{5}\right)f_{j}$$

Hierarchy between flavourconserving and flavour-violating depends on the UV theory

Flavour anarchy: $C_{ij}^{A,V}(\Lambda_{\mathrm{UV}}) \sim \mathcal{O}(1)$

What New Physics?

<u>Lepton-flavour</u> <u>Violating</u>

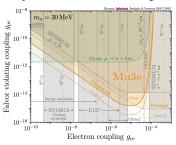


$$\mathcal{L}_{\mathrm{FV-a}} = \frac{m_{\mu}}{2f_a} \frac{1}{\mid C_{e\mu} \mid} a \bar{\mu} (C_{e\mu}^V + C_{e\mu}^A \gamma_5) e$$

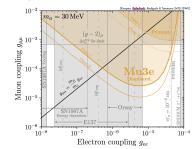
Bump hunt in electron momentum p_{ρ}

[Bayes et al (TWIST Collaboration) 1411.1770]
[Perrevoort et al (Mu3e Collaboration) 1812.00741]

Lepton-flavour Conserving

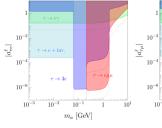

$$\begin{split} \mathcal{L}_0 \supset X \left[\bar{\mu}(g_S^\mu + g_P^\mu \gamma_5) \mu + \bar{e}(g_S^e + g_P^e \gamma_5) e \right] \\ \\ \mathcal{L}_1 \supset X^a \left[\bar{\mu} \gamma_a (g_V^\mu + g_A^\mu \gamma_5) \mu + \bar{e} \gamma_a (g_V^e + g_A^e \gamma_5) e \right] \end{split}$$

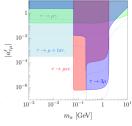
Bump hunt in e^+e^- -pair invariant mass

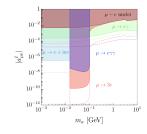

[Echenard et al 1411.1770] [Perreyoort et al (Mu3e Collaboration) 1812.00741]

LFV from light NP: axionlike particles

Lepton Flavour Violating ALP



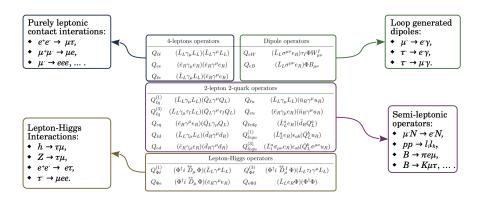

Lepton Flavour Conserving ALP



LFV from light NP: axionlike particles

$$\begin{split} \mathcal{L}_{\text{eff}}^{d \leq 5} &= \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{m_a^2 a^2}{2} \\ &+ e^2 \, c_{\gamma \gamma} \frac{a}{\Lambda} F_{\mu \nu} \tilde{F}^{\mu \nu} + g_s^2 \, c_{gg} \frac{a}{\Lambda} G_{\mu \nu} \tilde{G}^{\mu \nu} - \frac{\partial_{\mu} a}{\Lambda} \sum_{f,i,j} \bar{f}_i \gamma^{\mu} (v_{ij}^f - a_{ij}^f \gamma_5) f_j \end{split}$$

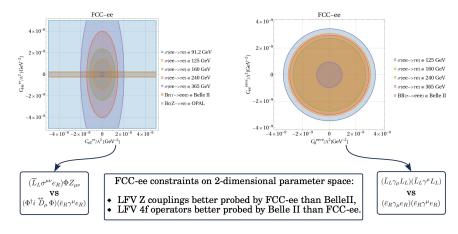
[Cornella, P.P. & Sumensari, '19.]



$$\mathcal{B}(\ell_i \to \ell_j \gamma \gamma) \approx \mathcal{B}(\ell_i \to \ell_j a) \times \mathcal{B}(a \to \gamma \gamma) \quad \Rightarrow \quad \mathrm{BR}(\ell_i \to \ell_j \ell_k \bar{\ell}_k) \not\approx \alpha \times \mathrm{BR}(\ell_i \to \ell_j \gamma)$$

Message: correlations among LFV signals discriminate heavy vs. light NP!

Low-energy vs high-energy LFV

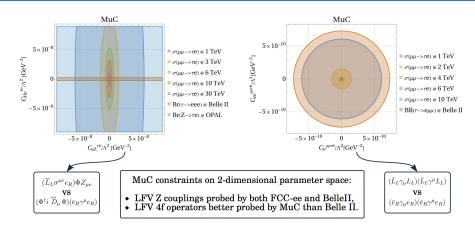


Energy dependence of LFV signals

$$\Gamma(\tau \to 3e) \sim \frac{m_\tau^5}{\Lambda^4} \qquad \qquad \Gamma(Z \to \tau e) \sim \frac{m_Z^5}{\Lambda^4} \qquad \qquad \sigma(ee \to \tau e) \sim \frac{E_{CM}^2}{\Lambda^4}$$

- # of Z events @ FCC-ee: $N_Z(e^+e^- \rightarrow Z) \sim 10^{11}$
- # of Z events @ MuC: $N_Z(\mu^+\mu^- \to \bar{\nu}\nu Z) \sim 10^{11} \left(\frac{\sqrt{s}}{30 \text{ TeV}}\right)^4$

LFV @ FCC-ee


Energy dependence of LFV signals

$$\Gamma(\tau \to 3e) \sim \frac{m_\tau^5}{\Lambda^4} \qquad \qquad \Gamma(Z \to \tau e) \sim \frac{m_Z^5}{\Lambda^4} \qquad \qquad \sigma(ee \to \tau e) \sim \frac{E_{CM}^2}{\Lambda^4}$$

Message: The high luminosity FCC-ee is competitive with Belle II to probe LFV

[Bartocci, Pagani, PP & Scantamburlo, to appear. See also Calibbi et al., '21 & Altmannshofer et al. '23]

LFV @ Muon Collider

Energy dependence of LFV signals

$$\Gamma(au o 3e)\sim rac{m_ au^5}{\Lambda^4}$$

$$\Gamma(Z o au e)\sim rac{m_Z^5}{\Lambda^4}$$

$$\Gamma(au o 3e)\sim rac{m_{ au}^5}{\Lambda^4} \qquad \qquad \Gamma(Z o au e)\sim rac{m_{ au}^5}{\Lambda^4} \qquad \qquad \sigma(\mu\mu o au e)\sim rac{E_{CM}^2}{\Lambda^4}$$

Message: Energy helps accuracy!

[Bartocci, Pagani, PP & Scantamburlo, to appear.]

Conclusions and future prospects

Important questions in view of ongoing/future experiments are:

- What are the expected deviations from the SM predictions induced by TeV NP?
- Which observables are not limited by theoretical uncertainties?
- In which case we can expect a substantial improvement on the experimental side?
- What will the measurements teach us if deviations from the SM are [not] seen?

(Personal) answers:

- We can expect any deviation from the SM expectations below the current bounds.
- LFV processes and leptonic EDMs do not suffer from theoretical limitations and there are still excellent prospects for experimental improvements.
- FCC-ee and a high-energy Muon Collider are complementary with each other and also with Belle II and LHCb to probe LFV.

Message: an exciting program is in progress at the Intensity Frontier which would greatly benefit from the next high-energy frontier program (FCC & MuC)!