Improved calculation of radiative corrections to $au o \pi\pi u_{ au}$ decays

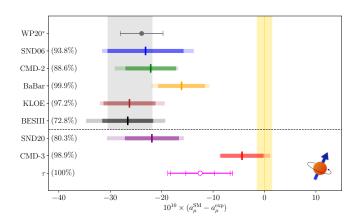
Martin Hoferichter

UNIVERSITÄT

AEC
ALBERT EINSTEIN CENTER
FOR FUNDAMENTAL PHYSICS

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern

Nov 13, 2025


4th Liverpool Workshop on Muon Precision Physics 2025 (MPP2025)

Liverpool, UK

Colangelo, Cottini, MH, Holz, arXiv:2510.26871, 2511.07507

Data-driven determinations of HVP

- ullet Confusing situation in $e^+e^-
 ightarrow \pi^+\pi^-$ Talks by T. Teubner, A. Wright, A. Denig
- Can we get $\tau \to \pi \pi \nu_{\tau}$ theory under control to justify τ -based HVP evaluations?

Hadronic τ decays

Master formula for $\tau \to \pi \pi \nu_{\tau}(\gamma)$

$$\frac{1}{\mathcal{K}_{\Gamma}(s)}\frac{d\Gamma}{ds}[\tau \to \pi\pi\nu_{\tau}(\gamma)] = \underbrace{S_{\text{EW}}^{\pi\pi}}_{\text{short distance}} \times \underbrace{\left[\beta_{\pi\pi^0}\right]^3}_{\text{phase space}} \times \underbrace{\left[f_{+}(s)\right]^2}_{\langle \pi\pi^0|j_W^{\mu}|0\rangle} \times \underbrace{G_{\text{EM}}(s)}_{\text{radiative corrections}}$$

- Alternative approach via **hadronic** τ **decays**: $\tau \to h\nu_{\tau}$, $h=2\pi, 4\pi, \ldots$ related to I=1 part of $e^+e^- \to h$ cross section Alemany et al. 1998
- Experimental status: LEP and Belle, new data from Belle II
- Relation exact in limit of isospin symmetry
 - \hookrightarrow need to control corrections, especially in $\underbrace{\langle \pi^+\pi^-|j_{\rm em}^\mu|0\rangle}_{F_\pi^\nu(s)}$ vs. $\underbrace{\langle \pi^\pm\pi^0|j_{W\mp}^\mu|0\rangle}_{f_\pm(s)}$
- Isospin breaking (IB): corrections to CVC important, especially $f_+(s)$ vs. $F_{\pi}^{V}(s)$

Isospin-breaking corrections to $\tau \to \pi\pi\nu_{\tau}$: basics

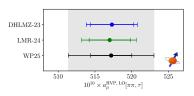
Master formula for $au o \pi\pi u_{ au}(\gamma)$

$$\frac{1}{\mathcal{K}_{\Gamma}(s)}\frac{d\Gamma}{ds}[\tau \to \pi\pi\nu_{\tau}(\gamma)] = \underbrace{S_{\text{EW}}^{\pi\pi}}_{\text{short distance}} \times \underbrace{\beta_{\pi\pi^0}^3}_{\text{phase space}} \times \underbrace{|f_{+}(s)|^2}_{\langle \pi\pi^0|j_{W}^{\mu}|0\rangle} \times \underbrace{G_{\text{EM}}(s)}_{\text{radiative corrections}}$$

Short-distance corrections

$$S_{\mathsf{EW}}^{\pi\pi} = 1 + \frac{2\alpha}{\pi} \log \frac{M_Z}{m_{\tau}} + \cdots$$

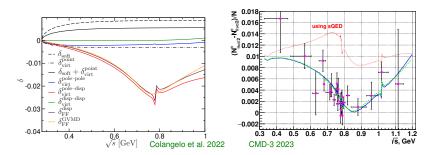
- In isospin limit: $f_+(s)$ same as $F_\pi^V(s)$ (matrix element from $e^+e^- \to \pi^+\pi^-$)
- Radiative corrections subsumed into $G_{EM}(s)$ (similar to $\eta(s)$ in $e^+e^- \to \pi^+\pi^-$)


$$\sigma_{e^+e^- \rightarrow \pi^+\pi^-(\gamma)}(s) = \frac{1}{\mathcal{N}(s)\Gamma_e} \frac{d\Gamma_{\tau^\pm \rightarrow \pi^\pm\pi^0\nu_\tau(\gamma)}}{ds} \times \frac{1 + \frac{\alpha}{\pi}\eta(s)}{S_{\text{EW}}^{\pi\pi}G_{\text{EM}}(s)} \frac{\left[\beta_{\pi\pi}(s)\right]^3}{\left[\beta_{\pi\pi^0}(s)\right]^3} \left|\frac{F_{\pi}^{\text{V}}(s)}{f_{+}(s)}\right|^2$$

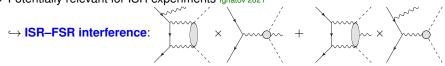
- Procedure:
 - **1** Remove τ -specific IB corrections: $S_{FW}^{\pi\pi}G_{EM}(s)$ and phase space
 - 2 Apply corrections to matrix element to get from $f_{+}(s)$ to $F_{\pi}^{V}(s)$
 - **3** Add e^+e^- specific IB corrections $(\eta(s))$ and $\rho-\omega$ mixing)

Isospin-breaking corrections to $\tau \to \pi\pi\nu_{\tau}$: status

		Refs. [168, 196]	Ref. [211]	Refs. [239, 249]	Our estimate
Phase space		-7.88	-7.52	_	-7.7(2)
$S_{\rm EW}$		-12.21(15)	-12.16(15)	_	-12.2(1.3)
G_{EM}		-1.92(90)	$(-1.67)^{+0.60}_{-1.39}$	_	-2.0(1.4)
FSR		4.67(47)	4.62(46)	4.42(4)	4.5(3)
ρ – ω mixing		4.0(4)	2.87(8)	3.79(19)	3.9(3)
$\frac{F_g^V}{f_v}$ (w/o ρ – ω)	ΔM_{ρ}	$0.20(^{+27}_{-19})(9)$	1.95+1.56	_	
	$\Delta\Gamma_{\rho}(\Delta M_{\pi})$	4.09(0)(7)	3.37	-	
	$\Delta\Gamma_{\rho}(\pi\pi\gamma)$	-5.91(59)(48)	-6.66(73)	_	
	$\Delta\Gamma_{\rho}(g_{\rho\pi\pi})$	-	_	_	
	Total	-1.62(65)(63)	$(-1.34)^{+1.72}_{-1.71}$	-	-1.5(4.7)
Sum		-14.9(1.9)	$(-15.20)^{+2.26}_{-2.63}$	_	-15.0(5.1)

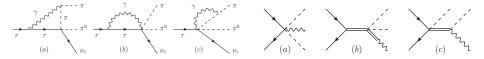

Status of IB corrections

- FSR(s) = 1 + $\frac{\alpha}{\pi}\eta$ (s) and ρ - ω mixing from e⁺e⁻ \rightarrow π ⁺ π ⁻ \rightarrow reasonably well under control
- Otherwise, uncertainty currently difficult to quantify, attempt made in WP25


• Main challenges:

- **Short-distance matching**: $\mathcal{O}(\frac{\alpha}{\pi})$ uncertainty beyond LL Work in progress, see below
- 2 Long-range radiative corrections: structure-dependent effects in $G_{EM}(s)$ This talk
- **IB** in matrix elements: $f_+(s)$ vs. $F_{\pi}^{V}(s)$ Work in progress, Colangelo, Cottini, Ruiz de Elvira 2025

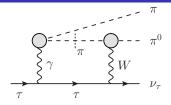
Why worry about structure-dependent radiative corrections?



- CMD-3 found large deviations from MC result for forward-backward asymmetry
 - \hookrightarrow understood from resonance enhancement of virtual corrections Ignatov, Lee 2022
- Potentially relevant for ISR experiments Ignatov 2021

Under investigation RadioMonteCarLow 2, see Friday

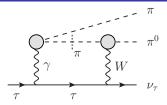
Calculation in ChPT


- Applies at low energies
- UV divergences removed by LECs

$$X_{\ell} \equiv \frac{4}{3}X_1 + X_6^r(\mu_{\chi}) - 4K_{12}^r(\mu_{\chi})$$

- ullet Matching to lattice-QCD calculations of $\langle \pi\pi^0|j^\mu_{
 m em}j^
 u_{
 m W}|0
 angle$ Feng et al. 2020, Yoo et al. 2023
- ullet For now use $X_\ell(M_
 ho)=14 imes10^{-3}$ Ma et al. 2021
 - \hookrightarrow improved matching in preparation Cirigliano et al.
- ullet Local ChPT contribution dropped in previous work (including $\Delta X_\ell ig|_{\mathrm{SD}} = rac{1}{4\pi^2} \log rac{m_\tau^2}{M_
 ho^2})$
- Uncertainty in real emission dominated by F_A

Dispersive calculation


- Dominant correction from pion pole in $\langle \pi\pi^0|j_{\rm em}^\mu j_W^\nu|0\rangle$
 - → reduces to ChPT for point-like form factors
- Matching at low energies

$$f_{\mathsf{loop}}^{\mathsf{full}}(s,t) = f_{\mathsf{loop}}^{\mathsf{disp}}(s,t) - f_{\mathsf{loop}}^{\mathsf{disp}}(0,0) + f_{\mathsf{loop}}^{\mathsf{ChPT}}(0,0)$$

- \hookrightarrow ensures that IR structure and chiral logs are correct
- ullet Checked that limits match onto ChPT, including narrow-width limit and $M_
 ho o \infty$ for UV divergence
- This is the same topology as in the $e^+e^- \to \pi^+\pi^-$ asymmetry!

Some technicalities of the box diagram

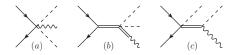
Use an unsubtracted dispersion relation

$$f_{+}(s) = \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\text{Im } f_{+}(s')}{s' - s}$$

→ result UV finite

- Interpret Cauchy kernel as loop propagator
- Express the integral in terms of standard Passarino-Veltman functions

$$f_{\mathrm{loop}}^{\mathrm{disp}}(s,t) = \alpha \int_{4M_\pi^2}^{\infty} ds' \int_{4M_\pi^2}^{\infty} ds'' \operatorname{Im} f_+(s') \operatorname{Im} f_+(s'') \sum_{k \in \{B_0,C_0,D_0\}} \mathcal{M}_k(s,t,s',s'')$$


IR and endpoint singularities need to be treated carefully

Real emission: bremsstrahlung off τ and π

- Leading Low term
 - Cancels IR divergence
 - Logarithmic divergence at threshold
- Remaining radiation off τ and π
 - Exhibits threshold divergence $G_{\rm EM}(s) \propto 1/(s-4M_\pi^2)$
 - Numerically largest effect
 - Delicate to evaluate close to threshold
 - Developed parameterization via suitably chosen angles that allows for stable evaluation down to threshold
- Threshold enhancement makes certain $\mathcal{O}(e^4)$ effects relevant, otherwise, always work at $\mathcal{O}(e^2)$, ensure correct threshold by mapping

$$\begin{split} & \widetilde{S}(s) \to G_{\text{EM}}[\widetilde{S}(s)] \\ & \widetilde{S}(s) = \frac{(m_{\tau}^2 - 4M_{\pi}^2)s + \left[4M_{\pi}^2 - (M_{\pi} + M_{\pi^0})^2\right]m_{\tau}^2}{m_{\tau}^2 - (M_{\pi} + M_{\pi^0})^2} \qquad \widetilde{S}[(M_{\pi} + M_{\pi^0})^2] = 4M_{\pi}^2 \qquad \widetilde{S}(m_{\tau}^2) = m_{\tau}^2 \end{split}$$

Real emission: resonance diagrams

- Keep states required for resonance saturation of L_9 , L_{10} + WZW anomaly \hookrightarrow free parameters F_V , G_V , F_A
- Short-distance constraints

$$F_V = \sqrt{2}F_\pi \simeq 0.13\,\mathrm{GeV}$$
 $G_V = rac{F_\pi}{\sqrt{2}} \simeq 0.065\,\mathrm{GeV}$ $F_A = F_\pi \simeq 0.092\,\mathrm{GeV}$

• Phenomenological determinations from $\rho \to e^+e^-, \pi\pi, K^* \to K\pi, a_1 \to \pi\gamma$

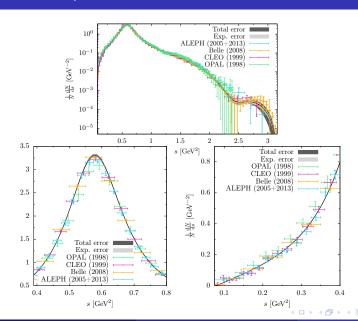
$$F_V \simeq 0.16\,\mathrm{GeV}$$
 $G_V \simeq 0.065\,\mathrm{GeV}$ $F_A \simeq 0.12\,\mathrm{GeV}$

- We tried a new estimate $a_1 \to \pi \rho \to \pi \gamma$, yielding $F_A = (0.07...0.13) \, \text{GeV}$
- Uncertainty in F_A dominant effect, little motivation to include higher multiplets

Dispersive representation of pion form factor

- Need input for Im $f_+(s)$, should be consistent with $\tau \to \pi \pi \nu_{\tau}$ spectrum
- ullet Follow strategy from Colangelo, MH, Stoffer 2018 ..., supplemented by ho', ho''

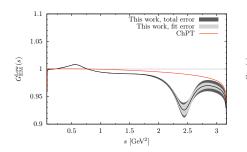
$$\frac{f_+(s)}{f_+(s)} = \left[1 + G_{\text{in}}^{\text{N}}(s) + \sum_{V = \rho', \rho''} c_V \mathcal{A}_V(s)\right] \frac{\Omega_1^1(s)}{\Omega_1^1(s)} \qquad \Omega_1^1(s) \equiv \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^\infty ds' \frac{\delta_1^1(s')}{s'(s'-s)}\right\}$$

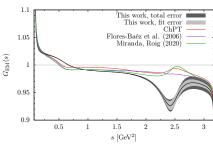

- P-wave phase shift $\delta_1^1(s)$ from Roy equations, free parameters: $\delta_1^1(s_0)$, $\delta_1^1(s_1)$
- Conformal polynomial with $\pi\omega$ threshold, constrained as P wave and by $f_+(0)=1$
- Resonance terms

$$\mathcal{A}_V(s) = \frac{s}{\pi} \int_{s_{\text{thr}}}^{\infty} ds' \frac{\text{Im}\,\mathcal{A}_V(s')}{s'(s'-s)} \qquad \text{Im}\,\mathcal{A}_V(s) = \text{Im}\,\frac{1}{M_V^2 - s - i\sqrt{s}\Gamma_V(s)}$$

- Total number of parameters: $2 + 3 \times 2 + N 2 = 6 + N$
- Calculate first approximation for $G_{EM}(s)$ with $f_{+}(s) = \Omega_{1}^{1}(s)$, iterate until convergence (few steps)

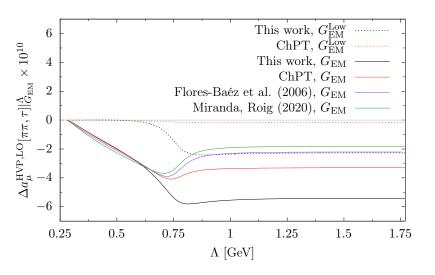
Fits to the τ spectrum


Fits to the τ spectrum



Observations

- Fits are not perfect, tensions among the data sets do exist
- Tension between threshold and $\rho(770)$ region upon imposing analyticity/unitarity constraints
- New data from Belle II would be extremely valuable!


Results

	DHLMZ-23	LMR-24	WP25	This work
Phase space	-7.88	-7.52	-7.7(2)	-7.74(5)
$\mathcal{S}_{EW}^{\pi\pi}$	-12.21(15)	-12.16(15)	-12.2(1.3)	-12.2(1.3)
G_{EM}^{full}	-1.92(90)	$(-1.67)^{+0.60}_{-1.39}$	-2.0(1.4)	-5.4(5)
Sum	-22.01(91)	$(-21.35)^{+0.62}_{-1.40}$	-21.9(1.9)	-25.3(1.4)
Full	-	-	_	-24.8(1.4)

Results

Towards an improved short-distance matching for $au o \pi\pi u_{ au}$

- Standard factor $S_{EW} = 1 + \frac{2\alpha}{\pi} \log \frac{M_Z}{m_\tau} + \cdots$ encodes universal corrections to all semi-leptonic decays, known at NLL (in a particular scheme)
- However: not accounted for at present is scheme dependence of the short-distance Wilson coefficient at NLL
 - ⇔ corresponds to choice of evanescent operator Cirigliano et al. 2023
- Needs to cancel in the matching at the hadronic scale
- Matching can be performed, following Descotes-Genon 2005, Cirigliano et al. 2023, based on lattice-QCD input for γ W box correction Feng et al. 2020, Yoo et al. 2023
- Further cross check: in addition to evanescent scheme, need to show that all scale dependence cancels at the order considered work in progress
 - ullet Chiral renormalization scale μ_χ
 - ullet LEFT renormalization scale μ

A similar example: radiative corrections to neutron β decay

Start from LEFT Lagrangian

$$\mathcal{L}_{\text{LEFT}} = -2\sqrt{2} \textit{G}_{\textit{F}} \bar{\textbf{e}}_{\textit{L}} \gamma_{\rho} \mu_{\textit{L}} \bar{\nu}_{\mu \textit{L}} \gamma^{\rho} \nu_{\textit{eL}} - 2\sqrt{2} \textit{G}_{\textit{F}} \textit{V}_{\textit{ud}} \frac{\textit{C}(\textbf{a}, \mu)}{\textit{e}} \bar{\textbf{e}}_{\textit{L}} \gamma_{\rho} \nu_{\textit{eL}} \bar{\textbf{u}}_{\textit{L}} \gamma^{\rho} \textit{d}_{\textit{L}} + \text{h.c.} + \cdots$$

- \hookrightarrow scheme for G_F defined by muon decay
- Wilson coefficient for the semileptonic operator in $\overline{\rm MS}$ + NDR for γ_5

$$C(a,\mu) = 1 + \frac{\alpha}{\pi} \log \frac{M_Z}{\mu} + \frac{\alpha}{\pi} \underbrace{\left(\frac{a}{6} - \frac{3}{4}\right)}_{\equiv B(a)} - \frac{\alpha \alpha_s}{4\pi^2} \log \frac{M_W}{\mu} + \mathcal{O}(\alpha \alpha_s, \alpha^2)$$

$$\gamma^{\alpha}\gamma^{\rho}\gamma^{\beta}P_{L}\otimes\gamma_{\beta}\gamma_{\rho}\gamma_{\alpha}P_{L}=4[1+a(4-d)]\gamma^{\rho}P_{L}\otimes\gamma_{\rho}P_{L}+E(a)$$

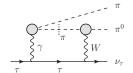
- ullet Dependence on a and μ needs to cancel in observables (at the order considered)
- Matching to ChPT: relevant low-energy constant is $g_V(\mu_\chi) = 1 + \mathcal{O}(\alpha)$
 - \hookrightarrow corrections correspond to $X_{\ell}(\mu_{\chi})$ here

A similar example: radiative corrections to neutron β decay

Master formula Cirigliano et al. 2023

$$\begin{split} & g_{V}(\mu_{\chi}) = \bar{\bar{C}}(\mu) \bigg[1 + \bar{\Box}_{\text{had}}^{V}(\mu_{0}) - \frac{\alpha(\mu_{\chi})}{2\pi} \bigg(\frac{5}{8} + \frac{3}{4} \log \frac{\mu_{\chi}^{2}}{\mu_{0}^{2}} + \bigg(1 - \frac{\alpha_{s}(\mu_{0})}{4\pi} \bigg) \log \frac{\mu_{0}^{2}}{\mu^{2}} \bigg) \bigg] \\ & C(a, \mu) \equiv \bar{\bar{C}}(\mu) \bigg(1 + \frac{\alpha(\mu)}{\pi} B(a) \bigg) \\ & \bar{\Box}_{\text{had}}^{V}(\mu_{0}) \equiv -ie^{2} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{\nu^{2} + Q^{2}}{Q^{4}} \bigg[\frac{T_{3}(\nu, Q^{2})}{2m_{N}\nu} - \frac{2}{3} \frac{1}{Q^{2} + \mu_{0}^{2}} \bigg(1 - \frac{\alpha_{s}(\mu_{0})}{\pi} \bigg) \bigg] \end{split}$$

- $T_3(\nu, Q^2)$ is a two-current matrix element of the nucleon, μ_0 another factorization scale
- Dependence on $a, \mu, \mu_{\chi}, \mu_{0}$ drops out from decay rate at the considered order
- For $\tau \to \pi\pi\nu_{\tau}$, the analog of $T_3(\nu,Q^2)$ can be extracted from existing lattice calculations Feng et al. 2020, Yoo et al. 2023


General strategy for the calculation of IB corrections

- Strategy for phenomenological calculations:
 - Starting point: chiral perturbation theory
 - \hookrightarrow validity limited to low-energy region
 - 2 Combination with dispersion relations
 - Precision often limited by low-energy constants (LECs)
- Choice of isospin scheme often hidden in LECs Gasser, Rusetsky, Scimemi 2003
- Examples:
 - ullet IB in pion form factor $F_\pi^V(s)$ Monnard 2021, Colangelo et al. 2025, work in progress
 - \hookrightarrow need to match to ChPT for subtraction constants
 - ullet IB in $e^+e^ightarrow 3\pi$ MH, Hoid, Kubis, Schuh 2023, Biloshytskyi et al. 2025
 - \hookrightarrow need to choose an isospin-limit value of $\omega \to 3\pi$ coupling
 - Similar case: $ho^\pm o \pi^\pm \pi^0$ vs. $ho^0 o \pi^+ \pi^-$ coupling for au IB corrections wp25
 - ullet Radiative corrections to $au o\pi\pi
 u_{ au}$ Colangelo, Cottini, MH, Holz 2025

Conclusions and outlook

- Calculation of IB corrections crucial in multiple instances for $(g-2)_{\mu}$ program
 - Radiative corrections to $e^+e^- o \pi^+\pi^-(\gamma)$
 - Hadronic τ decays
 - Detailed comparisons of HVP calculations to lattice QCD
- From phenomenological perspective: ChPT + dispersion relations
 - → often limited by LECs, or implicit choice of IB scheme
- Obvious case for complementarity with lattice QCD
- Radiative corrections to $au o \pi\pi
 u_{ au}$
 - Extended validity of G_{EM}(s) beyond low-energy region
 - Structure-dependent virtual corrections are large (again)
 - Improved matching to ChPT and short-distance corrections In progress
- Main open point for τ decays: $f_+(s)$ vs. $F_{\pi}^{V}(s)$
 - Can be addressed with dispersion relations
 - Expect important role of subtraction constants
 - Matching to ChPT and lattice QCD to be developed!

