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Motivation

@ Structure-dependent radiative corrections potentially sizable in
ete” = mrn y(y)

@ Two recent examples

o Forward—backward asymmetry in ete™ — 77—

o Radiative corrections to 7 — wrv,
@ Required matrix elements

@ ~*~* — mm: construction of matrix elements known, but how to combine with
multiloop techniques and implement in MC generators? This talk

@ ~*~*~y — 7 construction of matrix elements work in progress Talk by Emilis
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Decomposition into scalar functions

@ Consider process
Y (q1, M) (G2, A2) — 73 (p1)7P(p2)

s=(@+@P = +p)?  t=(q—p)P=(@-p)? u=(g—p)=(q - p)°

@ Decompose amplitude into scalar functions Bardeen, Tung, Tarrach, see next talk for derivation

T = qi - g™ - afal TS = ihg"” + a1 - eal'ay — ok ay — dhal el
THY = (t—u)(T} = T1) G3 = P2 — P

v
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TIY = g - qoatal — dialial + St u)gag"Y — S(t—vage
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@ Matches onto 5 helicity amplitudes Hj, x,, A2 € {++, +—,0+,+0,00}

,
T = dgae + (- o) (daye — dae) - (- we'e
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Pion-pole contributions

@ Pion-pole contributions defined by Cutkosky rules, this gives

1 1
a7 — _FY(RVEY 2( +7>
1 = (91)Fr (a2) 2 u—me
2 1 1 2
AT~ _FY(RVEY (R ( n ):FV 2\EV
4 = (ar) ﬂ(‘h)s_q?_qg T uo e = (a1) "(qg)(t—M,%)(u—MEr)

A =A] = AT =0
@ Coincides with sQED times form factors: FxsQED = FsQED in this case
@ This is not guaranteed to happen, counterexample: nucleon pole vs. nucleon Born
term in nucleon Compton scattering
@ Result is easy to combine with multiloop techniques by writing
s I TN
@ For ~*v* — mr at low energies this is the dominant effect, but certainly for

v¥*v*y — 7w we need to learn how to go beyond
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Phenomenology of vy — 7w
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@ Pion pole dominant effect at low energies /s < 1 GeV

< unitarity corrections from == S-wave rescattering = f,(500) resonance

@ For /s > 1GeV, £,(1270) resonance

— D-wave rescattering of 37 ~ w, 27 ~ p left-hand cuts

@ Doubly-virtual process yv*+v* — =wr (largely) predicted in terms of pion and

vector-meson form factors
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S-wave rescattering

@ Pion-pole amplitude not unitary
— rescattering corrections via w7 phase shifts d,(s)

@ Unitarity relation formulated at the level of helicity amplitudes

Im hy(s) = hy(s)e "0 sin 6,(s)

— inhomogenous Muskhelishvili-Omnés problem
@ S-wave solution reads

Q(s) [oo  ,sindp(s’) 1 s - —q n 2455 /
ho 4+ (8) = No_y s () + ds K - )N (') + N (s)]
o o a2 190 L\s =5 T xpa(s) /T T N O
Q(s) oo ,sinéo<s’)[< 1 s’—q?—q%) , 2 }
h s) = N s) + ds — N s+ —N s
0,00(8) = No,00(S) e s L\s s Ma(s) lb,00(S") N2l o,++(s")
s [oo So(s’ s Im Qq(s’ 1 oo Im Qq(s’
Q(s) = exp 4 > s So(s) | _,. s gs’ M(s) 1 s’ M0(s)
™ Jam2 s'(s’ —s) ™ Jam2 s'(s' —s)  wJam2 s’ —s

@ No ++(S), No,oo(S): partial-wave projection of pion-pole terms

< complicated dependence on g?
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First challenge: form of dispersive amplitudes

@ No++(S), No,oo(s): partial-wave projection of pion-pole terms

8 C @R s+
No,++(3) = FY(d5)F) Clz)[‘( 2GS )<ii::) )Oo(Xs)+2—(q ‘72))\12(83)(‘71 qg)]
4 _
No.aols) = FY(GFY () ()[%oo(xwzs]

2 2 2

— ¢ — 4M: 1 1 d
o= LB 1= e = [ F
or(S)A52(s) s 2/ x-z

@ Would like to have a rational function in the g7 to incorporate into multiloop
machinery, possible strategies:

@ Revert partial-wave projection, perform z integral numerically
. . o, :

@ Dispersion relation in qg; possible?

© Wick rotation/Gegenbauer decomposition of box diagram?

@ Dispersive calculation of box diagram?
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First challenge: form of dispersive amplitudes

@ Idea 1 produces

s.2)

v, 2,2(s) foo ,  sindo(s) A
AS) = P (@)F (05) n Jam2 % (s — 8)|Q(s)] /71 % D(s’, 2)

) = (6 + @B)iz(s) + 12507 65) 27
Ao(s. 2) = —4(s — 4M2)[s(s — & — @3) + (Ara(s) — 3s(s — &f — 63))Z’]

D(s, 2) = Ara(8)[s(Mra(8) + 467 65) — (s — 4ME)A2()2°]  Ara(s) = 6 + (¢ — 6B)° — 2s(cf + )

Ai(s,2) = —2(s — &f — G§)sh1a(s) + 2(s — 4M2)[s(Mra(s) + 405 b

< rational function of gZ, but not quite of standard propagator form

@ Why care about rescattering corrections?

— could be much more relevant for v*v*~v — 7w, due to P-wave rescattering

@ One more challenge: anomalous thresholds
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Second challenge: anomalous thresholds

@ Consider the scalar loop function Cy(s), s = p3

@ Fulfills the dispersion relation izl D3
mi
7 disc Cy(s”)
Co(s) = — ds’ 2 20 7
o(s) 2ni / ST ma msy
(mg+mg)2

+0[mapf + mapl — (my + mg) (mk + mamg) |

J
1 sy discan Co(s,

x L [ 2o s Golsn)
27 5 ox Sx — S

sx = x(my + m3)2 + (1 — x)ss

o s it e PR (mh ) (mh — )

2m? 3 ome 2m? 2m?

1
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@ — o0

@ Anomalous piece parameterizes the contour

deformation from threshold to s
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numerical numerical
~analytic ~analytic
dispersive ----- dispersive

‘—Re Co(s)

numerical numerical
~analytic ~analytic
dispersive ----- dispersive -—---

PRV
A

@ Example for my = my = mz = M, = 1 (upper: full, lower: without anomalous term)

< this is exactly what we need here, anomalous contribution for g2 + g5 > 4M?
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Second challenge: anomalous thresholds

@ In principle, we know how to deal with these anomalous contributions

1
Qp(s) sy discan hp(sx)
2 2 0 X an o
PO g = (6% 4 —a02) 22 [ P ox  s—s
0
8 to(s
ﬁ sX:4Mfrx+(1—x)s+

discan hp(s) = — V212(8) Qo(s)

but this makes it even harder to implement the result
@ Ultimately, the anomalous contribution is related to the singularities of the

logarithm in the partial-wave projection

Qo(xs) o< log S G Uﬂ(S)A}éZ(S)
5% — & — or(S)A152(5)

@ What happens with the anomalous contributions in Idea 1 above?

@ |s there a way to account for the anomalous effects in a numerical partial-wave
projection?
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Conclusions

@ Pion-pole contributions only the leading terms, corrections include
o Rescattering effects
@ Higher left-hand cuts
@ Challenges in the implementation
o Functional form of dispersive amplitudes
o Anomalous thresholds
@ Example of S-wave rescattering corrections

@ Correspond to f,(500) resonance in | =0

o Might not be the most relevant ones phenomenologically, but easiest conceptually

e Would suggest this as test case to learn on how to implement dispersive amplitudes
beyond FxsQED
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