Dispersive definition of $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$ for muon g-2 applications

Emilis Kaziukėnas ^{1,2}, Massimiliano Procura ¹, Peter Stoffer ^{3,4}

¹University of Vienna, Austria, ²Vienna Doctoral School in Physics, Austria ³University of Zurich, Switzerland, ⁴Paul Scherrer Institute, Villigen, Switzerland

November 14, 2025 Satellite RMCL2 working group meeting, University of Liverpool

Overview

- 1 Role of $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$ in $(g-2)_\mu$
- 2 BTT: tensor decomposition for dispersive purposes
- 3 Soft-singular contribution to $\gamma^* \gamma^* \gamma \to \pi^+ \pi^-$

Overview

- 1 Role of $\gamma^* \gamma^* \gamma \to \pi^+ \pi^-$ in $(g-2)_\mu$
 - HVP: radiative return experiments
 - HLbL: inclusion of spin-2 resonances
- 2 BTT: tensor decomposition for dispersive purposes
- 3 Soft-singular contribution to $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$

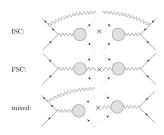
More dispersive theory for HVP!

- HVP in data-driven approach obtained from $\sigma(e^+e^- \to \text{hadrons}(+\gamma))$.
- Radiative return experiments $e^+e^- \to \pi^+\pi^-\gamma$. Detection of hard $\gamma \to \text{invariant mass of } \pi^+\pi^- \to \text{scan energies without changing detector settings!}$
- Challenges:
 - 1 VFF measured from initial-state radiation contirbutions inferference from final-state radiation.
 - 2 Experiment relies on theory input so far FsQED \rightarrow not model indep.!
- More dispersive theory could reduce uncertainties in radiative corrections introduced by model-dependence.

Radiative return at LO

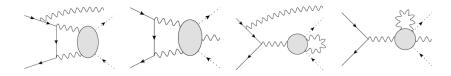
Aliberti et. al SciPost Phys.Comm.Rep. 9 (2025)

- Computing $\sigma(e^+e^- \to \pi^+\pi^-\gamma)$ at LO well-known ingredients:
 - Pion VFF F_{π}^{V} ; Compton tensor crossed version of $\gamma^* \gamma^* \to \pi^+ \pi^-$;
- Known dispersively to high precision ⇒ see Martin Hoferichter's talk!



Radiative return at NLO

Aliberti et. al SciPost Phys.Comm.Rep. 9 (2025)



- NLO new contributions arise:
 - 1 Well-known: Compton tensor (HLbL kin. or otherwise)
 - **2** In progress: rad. corrections to $F_{\pi}^{V} \Rightarrow$ Colangelo group
 - 3 New subprocesses: rad. corrections of Compton tensor and $\gamma^* \gamma^* \to \pi^+ \pi^- \gamma$ no dispersive description yet!
- For $\gamma^*\gamma^* \to \pi^+\pi^-\gamma$ $\pi^+\pi^-$ in P-wave: ρ -res. + internal res. enchancement \to FsQED not enough, unitarisation needed!
- \blacksquare 5-particle process in general kin. dispersive approach very complicated. Consider soft γ first!

Lüdtke, Procura, Stoffer, JHEP 04 (2023) & JHEP 130 (2025)

$$\frac{v_{1}}{v_{3}^{2}-\text{cut}} = v_{1} + v_{2} + v_{3} + v_{4} + v_{5} + v_{5}$$

- HLbL: large improvements from WP20, uncertainties dominated by axial and tensor resonances, matching to short-distance constraints.
- **Disp. relations in 4pt. kinematics:** spurious singularities in q_i^2 so far unclear how to include spin-2 resonances in a consistent, model-indep. way!
- New triangle kinematics approach take $q_4 \rightarrow 0$ immediately! Obtain HLbL from sum of two cuts.

Lüdtke, Procura, Stoffer, JHEP 04 (2023) & JHEP 130 (2025)

- Disperse in q_i^2 manifestly free of kin. singularities!
- Hefty price: complicated unitarity cuts, new subprocesses $\gamma^*\gamma^*\gamma \to V$, $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$, $\pi\pi \to \gamma\pi\pi$.
- Soft-singular parts exist, cancel only in the sum of two triangle kin. cuts (up to finite remainder).
- Soft-regular parts: $\gamma^*\gamma^*\gamma \to \pi^+\pi$ includes tensor resonances through e.g. *D*-wave of $\pi\pi$ scattering via $\pi\pi \to \gamma\pi\pi$ subprocess. Can reconstruct dispersively!

Lüdtke, Procura, Stoffer, JHEP 04 (2023) & JHEP 130 (2025)

$$\frac{v_{\text{res.}}}{v_{\text{res.}}} = \frac{v_{\text{res.}}}{v_{\text{res.}}} + \frac{v_{\text{res.}}}{v_{\text{res.}}} + \dots + \dots + \dots$$

- Disperse in q_i^2 manifestly free of kin. singularities!
- Hefty price: complicated unitarity cuts, new subprocesses $\gamma^* \gamma^* \gamma \to V$, $\gamma^* \gamma^* \gamma \to \pi^+ \pi^-$, $\pi \pi \to \gamma \pi \pi$.
- Soft-singular parts exist, cancel only in the sum of two triangle kin. cuts (up to finite remainder).
- Soft-regular parts: $\gamma^*\gamma^*\gamma \to \pi^+\pi$ includes tensor resonances through e.g. *D*-wave of $\pi\pi$ scattering via $\pi\pi \to \gamma\pi\pi$ subprocess. Can reconstruct dispersively!

Lüdtke, Procura, Stoffer, JHEP 04 (2023) & JHEP 130 (2025)

$$\frac{v_{\text{res.}}}{v_{\text{res.}}} + \frac{v_{\text{res.}}}{v_{\text{res.}}} + \frac{v_{\text{res.}}}{v_{\text{res.}}} + \dots + \dots$$

- Disperse in q_i^2 manifestly free of kin. singularities!
- Hefty price: complicated unitarity cuts, new subprocesses $\gamma^*\gamma^*\gamma \to V$, $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$, $\pi\pi \to \gamma\pi\pi$.
- Soft-singular parts exist, cancel only in the sum of two triangle kin. cuts (up to finite remainder).
- Soft-regular parts: $\gamma^*\gamma^*\gamma \to \pi^+\pi$ includes tensor resonances through e.g. *D*-wave of $\pi\pi$ scattering via $\pi\pi \to \gamma\pi\pi$ subprocess. Can reconstruct dispersively!

Can construct pole and non-pole terms of $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$ for HLbL applications! Intuition for HVP!

Overview

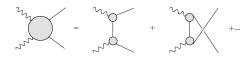
- 1 Role of $\gamma^* \gamma^* \gamma \to \pi^+ \pi^-$ in $(g-2)_{\mu}$
- 2 BTT: tensor decomposition for dispersive purposes
 - BTT decomposition: the $\gamma^* \gamma^* \to \pi^+ \pi^-$ subprocess
 - BTT decomposition for 3 photons
- 3 Soft-singular contribution to $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$

Motivation: BTT decomposition

Goal (Tensor basis for dispersive reconstruction)

Dispersive reconstruction of a scattering amplitude requires a tensor decomposition with:

- No kin. singularities or zeroes;
- Strongly desirable non-redundant basis;



- Will discuss BTT recipe: Bardeen, Tung, Phys. Rev. 173 5 (1968), Tarrach, Nuovo Cim A28 (1975). Satisfies the first requirement.
- Complicated tensor structure of $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$: use $\gamma^*\gamma^* \to \pi^+\pi^-$ Colangelo et al., JHEP 09 (2015) to illustrate the procedure.
- Naïve decomposition 10 tensor structures (q_i photon momenta, p_j pion):

$$W^{\mu\nu} = q_i^{\mu} q_i^{\nu} W_1^{ij} + g^{\mu\nu} W_2, \quad q_i \in \{q_1, q_2, p_1 - p_2\}.$$

■ Ward identity - 5 linear relations between *W_i* - left with 5 indep, tensor structures. **Kinematic zeroes!**

Colangelo et al., JHEP 09 (2015)

Gauge projectors: apply $I^{\mu\nu}=g^{\mu\nu}-q_2^{\nu}q_1^{\mu}/(q_1\cdot q_2)$ s.t. $W^{\mu\nu}=I^{\mu}_{\lambda}I^{\nu}_{\sigma}W^{\lambda\sigma}$. Now 5 strucs. W_i vanish, but now new tensor structures $T^{\mu\nu}_i$ have single and double poles in $(q_1\cdot q_2)$.

Colangelo et al., JHEP 09 (2015)

Gauge projectors: apply $I^{\mu\nu}=g^{\mu\nu}-q_2^{\nu}\,q_1^{\mu}/(q_1\cdot q_2)$ s.t. $W^{\mu\nu}=I^{\mu}_{\lambda}I^{\nu}_{\sigma}W^{\lambda\sigma}$. Now 5 strucs. W_i vanish, but now new tensor structures $T_i^{\mu\nu}$ have single and double poles in $(q_1\cdot q_2)$.

BT procedure: remove double poles by adding linear combinations of other tensor strucutres with non-singular coeffs; If no more can be removed - multiply strucs with $1/(q_1 \cdot q_2)^2$ poles by $(q_1 \cdot q_2)$ - repeat for single poles!

Colangelo et al., JHEP 09 (2015)

Gauge projectors: apply $I^{\mu\nu}=g^{\mu\nu}-q_2^{\nu}\,q_1^{\mu}/(q_1\cdot q_2)$ s.t. $W^{\mu\nu}=I^{\mu}_{\lambda}I^{\nu}_{\nu}W^{\lambda\sigma}$. Now 5 strucs. W_i vanish, but now new tensor structures $T_i^{\mu\nu}$ have single and double poles in $(q_1\cdot q_2)$.

2

BT procedure: remove double poles by adding linear combinations of other tensor strucutres with non-singular coeffs; If no more can be removed - multiply strucs with $1/(q_1 \cdot q_2)^2$ poles by $(q_1 \cdot q_2)$ - repeat for single poles!

3

Tarrach Redundancies: show that in $(q_1 \cdot q_2) \to 0$ basis $T_i^{\mu\nu}$ is degenerate. \exists a kin. zero: $(q_1 \cdot q_3)(q_2 \cdot q_3)T_2^{\mu\nu} - q_2^2(q_1 \cdot q_3)T_2^{\mu\nu} - q_1^2(q_2 \cdot q_3)T_4^{\mu\nu} + q_1^2q_2^2T_\epsilon^{\mu\nu} = (q_1 \cdot q_2)T_\epsilon^{\mu\nu},$

for some $T_6^{\mu\nu}$. Add $T_6^{\mu\nu}$ to basis - no kin. singularities or zeroes, but basis redundant!

Colangelo et al., JHEP 09 (2015)

1

Gauge projectors: apply $I^{\mu\nu}=g^{\mu\nu}-q_2^{\nu}\,q_1^{\mu}/(q_1\cdot q_2)$ s.t. $W^{\mu\nu}=I^{\mu}_{\lambda}\,I^{\nu}_{\nu}W^{\lambda\sigma}$. Now 5 strucs. W_i vanish, but now new tensor structures $T_i^{\mu\nu}$ have single and double poles in $(q_1\cdot q_2)$.

2

BT procedure: remove double poles by adding linear combinations of other tensor strucutres with non-singular coeffs; If no more can be removed - multiply strucs with $1/(q_1 \cdot q_2)^2$ poles by $(q_1 \cdot q_2)$ - repeat for single poles!

3

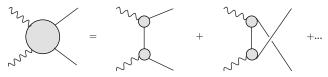
Tarrach Redundancies: show that in $(q_1\cdot q_2)\to 0$ basis $T_i^{\mu\nu}$ is degenerate. \exists a kin. zero: $(q_1\cdot q_3)(q_2\cdot q_3)T_2^{\mu\nu}-q_2^2(q_1\cdot q_3)T_3^{\mu\nu}-q_1^2(q_2\cdot q_3)T_4^{\mu\nu}+q_1^2q_2^2T_5^{\mu\nu}=(q_1\cdot q_2)T_6^{\mu\nu},$

for some $T_6^{\mu\nu}$. Add $T_6^{\mu\nu}$ to basis - no kin. singularities or zeroes, but basis redundant!

4

Coincidentally for $\gamma^*\gamma^* \to \pi^+\pi^-$: bose symmetry for pions and photons - additional zeroes. Can arrive at a non-redundant set: 5 structures, usable for the dispersive description!

Colangelo et al., JHEP 09 (2015)



Resultant tensor decomposition (A_i - can be described dispersively):

$$W^{\mu\nu} = \sum_{i=1}^{5} A_i T_i^{\mu\nu}.$$

- 5 × A_i structures matches # of unique helicity amplitudes. 1:1 correspondence useful for unitarisation (inclusion of final-state rescattering effects).
- **Redundant basis:** amplitude invariant under **Tarrach shift** (Δ arbitrary non-singular function).

$$\begin{split} W^{\mu\nu} &= \sum_{i=1}^6 B_i \, \tilde{T}_i^{\mu\nu}, & \delta W^{\mu\nu} = 0 \text{ if} \\ B_1' &= B_1, & B_2' &= B_2 - \frac{(q_1 \cdot q_3)(q_2 \cdot q_3)}{(q_1 \cdot q_2)} \Delta & B_3' &= B_3 + \frac{q_2^2(q_1 \cdot q_3)}{(q_1 \cdot q_2)} \Delta, \\ B_4' &= B_4 + \frac{q_1^2(q_2 \cdot q_3)}{(q_1 \cdot q_2)} \Delta, & B_5' &= B_5 - \frac{q_1^2 q_2^2}{(q_1 \cdot q_2)} \Delta, & B_6' &= B_6 + \Delta. \end{split}$$

■ Tarrach shifts will be crucial in constructing the pion pole contribution to $\gamma^* \gamma^* \gamma \to \pi^+ \pi^-$.

BTT decomposition for 3 photons: general kinematics

Lüdtke, Procura, Stoffer, JHEP 04 (2023)

$$\begin{split} &\langle \pi^{+}\left(p_{1}\right)\pi^{-}\left(p_{2}\right)|\gamma^{*}\left(q_{1},\lambda_{1}\right)\gamma^{*}\left(q_{2},\lambda_{2}\right)\gamma\left(q_{3},\lambda_{3}\right)\rangle\\ &=:ie^{3}(2\pi)^{4}\delta^{(4)}\left(p_{1}+p_{2}-q_{1}-q_{2}-q_{3}\right)\epsilon_{\mu}^{\lambda_{1}}\left(q_{1}\right)\epsilon_{\nu}^{\lambda_{2}}\left(q_{2}\right)\epsilon_{\lambda}^{\lambda_{3}}\left(q_{3}\right)\mathcal{M}^{\mu\nu\lambda}\left(p_{1},p_{2},q_{1},q_{2}\right)\end{split}$$

■ The BTT for $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$ - non-trivial, results in a redundant basis of 74 tensor structures in general 5-pt. kinematics:

$$\mathcal{M}^{\mu\nu\lambda} = \sum_{i=1}^{74} T_i^{\mu\nu\lambda} C_i.$$

- 38 Tarrach redundancies in D-dim.!
- Pick 36 tensors T_i in D-dim. for projection. Resultant $36 \times C_i$ contain many kinematic singularities of the form $1/(q_i \cdot q_k)$, removed using Tarrach redundancies 'by hand'.

Problem: Soft-singular pion pole - only meaningful in 5-pt. kinematics.

- 1 If direct construction $\mathcal{M}_{\text{pole}}^{\mu\nu\lambda}$ possible bypasses kin. singularities.
- 2 Otherwise, work at C_i level need a scheme for singularity cancellation using Δ_i 's.

BTT decomposition for 3 photons: soft- γ limit

Lüdtke, Procura, Stoffer, JHEP 04 (2023)

 $q_3 \rightarrow 0$ limit: Assume a gauge-invariant separation:

$$C_i = C_i^{\text{poles}} + C_i^{\text{non-pole}} = \begin{pmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\$$

• Once C_i^{poles} are known, soft-regular amplitude part in triangle kinematics:

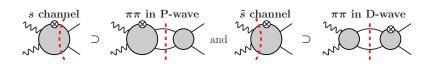
$$\mathcal{M}_{\mathsf{reg}}^{\mu\nu\lambda} = \sum_{i=1}^{74} \left. \hat{T}_{i}^{\mu} \mathit{C}_{i}^{\mathsf{non\text{-}pole}}, \frac{\partial}{\partial q_{3}^{\sigma}} \mathcal{M}_{\mathsf{reg}}^{\mu\nu\lambda} \right|_{q_{3}=0} = \sum_{i=1}^{74} \left. \left(\frac{\partial}{\partial q_{3}^{\sigma}} \hat{T}_{i}^{\mu\nu\lambda} \right) \right|_{q_{3}=0} \mathit{C}_{i}^{\mathsf{non\text{-}pole}} \left(q_{3}=0 \right),$$

which allows to extract $C_i^{\text{non-pole}}$ (can be described dispersively). Can show that **only 27 structures** survive - matches # of helicity amplitudes!

■ For projection: directly construct a rank-4 basis of 27 strucutres in $q_3 \to 0$ limit $T_i^{\mu\nu\lambda\sigma}$ - remnants of Ward identity wrt. q_3 imposed as antisymmetry in $\lambda \leftrightarrow \sigma$,

 $C_i^{\text{non-pole}}$ will contain spin-2 resonance effects in HLbL!

Aside: obtaining the soft-regular contribution



- Non-pole part: two types of contributions to $\pi\pi$ cut (other intermediates not included) set up inhom. Omnès problem.
- \tilde{s} -channel: $\pi\pi \to \gamma\pi\pi \Rightarrow \text{Luedke}$, Niklas-Toelstede, Stoffer, in preparation.
- From $\pi\pi \to \pi\pi\gamma$: try **reconstruction theorem** approach. Partial waves related to set of functions obeying simple disp. relations, integral system solved numerically!
- Subtraction constants: constrain their number by imposing asymp. scaling, the rest obtain from $SU(2) \chi PT$.

Current work: replace $\pi\pi$ in *D*-wave with $f_2(1270)$ res. in NWA.

Overview

- 1 Role of $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$ in $(g-2)_\mu$
- 2 BTT: tensor decomposition for dispersive purposes
- 3 Soft-singular contribution to $\gamma^* \gamma^* \gamma \to \pi^+ \pi^-$
 - Motivation and Goals
 - Poles of $\pi^0\pi^0 \to \gamma^*\pi^+\pi^-$: direct construction
 - Poles of $\gamma^* \gamma^* \gamma \to \pi^+ \pi^-$: direct construction
 - An *intermezzo*: sQED example
 - \blacksquare Poles of $\gamma^*\gamma^*\gamma\to\pi^+\pi^-\colon$ systematic construction

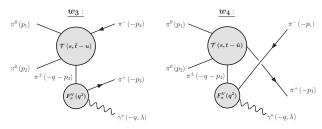
Motivation and goals

Goal (Dispersive soft-pole construction)

Construct an object that captures all soft singularities of $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$ in terms of $\gamma^*\gamma^*\to \pi^+\pi^-$ and VFF with:

- 1 Unique π -pole im. parts;
- 2 No kin. singularities;
- 3 Symmetries: gauge invariance, crossing;
 - Why dispersive? Alternatives (Low's thrm., Adler-Dothan) only q_1^{-1} , q_1^0 -terms in soft- q_1 expansion: remainder may be singular spoils disp. description of $C_i^{\text{non-pole}}$.
 - Complicated tensor structure of $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$: 74 BTT, 38 Tarrach redundancies Δ_i find simpler example first.
 - Starting point: 5-particle subprocess $\pi^0\pi^0 \to \gamma^*\pi^+\pi^-$ (*J. Lüdtke, PhD thesis*) use as analogy today.

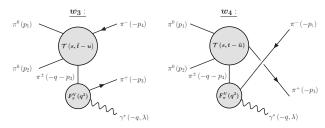
Important: result will **not be unique!** Any real part wrt. π -pole kinematic invariants (satisfying 1-3) works.



■ Pion-pole im. part:

$$\begin{split} & \operatorname{Im}_{w_3}^{\pi} \mathcal{M}^{\mu} = -\pi \left(2p_3 + q\right)^{\mu} \, \mathcal{T}(s, \tilde{t} - u) F_{\pi}^{V}(q^2) \delta((p_3 + q)^2 - M_{\pi}^2), \\ & \operatorname{Im}_{w_4}^{\pi} \mathcal{M}^{\mu} = +\pi \left(2p_4 + q\right)^{\mu} \, \mathcal{T}(s, t - \tilde{u}) F_{\pi}^{V}(q^2) \delta((p_4 + q)^2 - M_{\pi}^2), \end{split}$$

Amplitude ansatz?



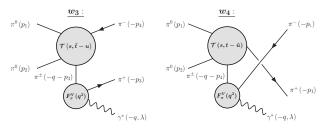
■ Pion-pole im. part:

$$\begin{split} & \operatorname{Im}_{w_3}^{\pi} \mathcal{M}^{\mu} = -\pi \left(2p_3 + q\right)^{\mu} \mathcal{T}(s, \tilde{t} - u) F_{\pi}^{V}(q^2) \delta((p_3 + q)^2 - M_{\pi}^2), \\ & \operatorname{Im}_{w_4}^{\pi} \mathcal{M}^{\mu} = +\pi \left(2p_4 + q\right)^{\mu} \mathcal{T}(s, t - \tilde{u}) F_{\pi}^{V}(q^2) \delta((p_4 + q)^2 - M_{\pi}^2). \end{split}$$

Amplitude ansatz?

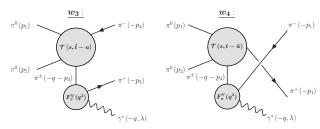
$$\mathcal{M}^{\mu} \stackrel{???}{=} F_{\pi}^{V}(q^{2}) \left(\frac{(2p_{3}+q)^{\mu}}{(p_{3}+q)^{2}-M_{\pi}^{2}} \mathcal{T}(s,\tilde{t}-u) - \frac{(2p_{4}+q)^{\mu}}{(p_{4}+q)^{2}-M_{\pi}^{2}} \mathcal{T}(s,t-\tilde{u}) \right).$$

⇒ Symmetries? Gauge invariance?



■ Not gauge invariant! Additional term:

$$\mathcal{M}^{\mu} = F_{\pi}^{V}(q^2) \left(\frac{(2p_3+q)^{\mu}}{(p_3+q)^2-M_{\pi}^2} \mathcal{T}(s,\tilde{t}-u) - \frac{(2p_4+q)^{\mu}}{(p_4+q)^2-M_{\pi}^2} \mathcal{T}(s,t-\tilde{u}) - \frac{2\left(\textbf{p_1}-\textbf{p_2}\right)^{\mu} \Delta \mathcal{T}}{(p_4+q)^2-M_{\pi}^2} \right),$$
 with $\Delta \mathcal{T} := \left(\mathcal{T}(s,\tilde{t}-u) - \mathcal{T}(s,t-\tilde{u}) \right) / (\tilde{t}-u-t+\tilde{u}).$ Real, not singular!

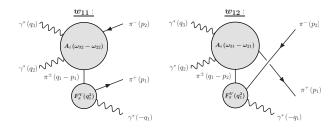


■ Not gauge invariant! Additional term:

$$\begin{split} \mathcal{M}^{\mu} &= \mathit{F}_{\pi}^{V}(q^{2}) \left(\frac{(2\mathit{p}_{3} + q)^{\mu}}{(\mathit{p}_{3} + q)^{2} - \mathit{M}_{\pi}^{2}} \mathcal{T}(s, \tilde{t} - \mathit{u}) - \frac{(2\mathit{p}_{4} + q)^{\mu}}{(\mathit{p}_{4} + q)^{2} - \mathit{M}_{\pi}^{2}} \mathcal{T}(s, t - \tilde{\mathit{u}}) - 2 \left(\mathit{p}_{1} - \mathit{p}_{2} \right)^{\mu} \Delta \mathcal{T} \right), \\ \text{with } \Delta \mathcal{T} := \left(\mathcal{T}(s, \tilde{t} - \mathit{u}) - \mathcal{T}(s, t - \tilde{\mathit{u}}) \right) / (\tilde{t} - \mathit{u} - t + \tilde{\mathit{u}}). \text{ Real, not singular!} \end{split}$$

■ For $3\gamma \rightarrow 2\pi$: $\mathcal{T} \stackrel{???}{\rightarrow} A_i \times \mathcal{T}_i^{\nu\lambda}$

Try similar approach for $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$ pole pieces

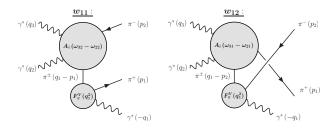


- Want result wrt VFF and $\gamma^* \gamma^* \to \pi^+ \pi^-$.
- Right imaginary parts (note shift in q1):

$$\mathcal{M}^{\mu\nu\lambda} = F_{\pi}^{V}(q_{1}^{2}) \left[\frac{(2p_{1} - q_{1})^{\mu}}{(p_{1} - q_{1})^{2} - M_{\pi}^{2}} W^{\nu\lambda} (p_{1} - q_{1}, p_{2}, q_{2}) - \frac{(2p_{2} - q_{1})^{\mu}}{(p_{2} - q_{1})^{2} - M_{\pi}^{2}} W^{\nu\lambda} (p_{2} - q_{1}, p_{1}, q_{2}) + \mathbb{R}^{\mu\nu\lambda} \right]$$

where $R^{\mu\nu\lambda}$ - real, finite, very hard to construct.

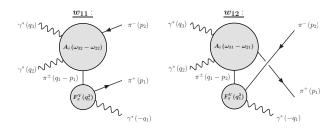
• $W^{\mu\nu} = \sum_{i=1}^{5} T_i^{\mu\nu} A_i$ - split into 5 parts.



■ First 2 functions A_i , i = 1, 2: $T_i^{\nu\lambda}$ indep. of soft- q_1 shift. Simplification:

$$\mathcal{M}_{A_i}^{\mu\nu\lambda} = F_\pi^V(q_1^2) T_i^{\nu\lambda} \left[\frac{(2p_1-q_1)^\mu}{(p_1-q_1)^2-M_\pi^2} A_i^{11} - \frac{(2p_2-q_1)^\mu}{(p_2-q_1)^2-M_\pi^2} A_i^{12} + R^\mu \right],$$

assumed $R^{\mu
u\lambda}=T_i^{
u\lambda} imes R^\mu$. Does it work?



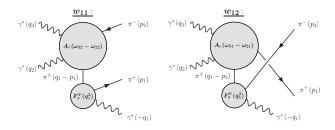
■ First 2 functions A_i , i = 1, 2: $T_i^{\nu\lambda}$ indep. of soft- q_1 shift. Simplification:

$$\mathcal{M}_{A_i}^{\mu\nu\lambda} = F_\pi^V(q_1^2) T_i^{\nu\lambda} \left[\frac{(2p_1-q_1)^\mu}{(p_1-q_1)^2 - M_\pi^2} A_i^{11} - \frac{(2p_2-q_1)^\mu}{(p_2-q_1)^2 - M_\pi^2} A_i^{12} + R^\mu \right],$$

assumed $R^{\mu\nu\lambda} = T_i^{\nu\lambda} \times R^{\mu}$. Does it work?

Yes!

$$\mathcal{M}_{A_{i}}^{\mu\nu\lambda} = F_{\pi}^{V}(q_{1}^{2})T_{i}^{\nu\lambda} \left[\frac{(2p_{1} - q_{1})^{\mu}}{(p_{1} - q_{1})^{2} - M_{\pi}^{2}} A_{i}^{11} - \frac{(2p_{2} - q_{1})^{\mu}}{(p_{2} - q_{1})^{2} - M_{\pi}^{2}} A_{i}^{12} - 2(q_{2} - q_{3})^{\mu} \frac{A_{i}^{11} - A_{i}^{12}}{W_{1}} \right].$$



- Other functions A_i , i=3,4,5: soft- q_1 shift $T_i^{\nu\lambda}$ differs in two channels.
- **Can prove:** Gauge inv. + pion crossing \Rightarrow simple factorization $R^{\mu\nu\lambda} \sim T_i^{\nu\lambda} \times R^{\mu}$ fails.
- Can't construct $\mathcal{M}^{\mu\nu\lambda}$ directly \Rightarrow will need to deal with many Δ_i in scalar functions C_i .

Need a more systematic approach!

An intermezzo: sQED example (1)

$$q_1$$
 q_2 q_3 q_4 q_5 q_7 q_8 q_8 q_8 q_8 q_8 q_8 q_9 q_9

- sQED tree-level amplitude: gain intuition on redundancy cancellation. FxsQED gives pole-pole contribution see Colangelo, Hoferichter, Stoffer JHEP 09 (2015).
- 15 out of 74 $C_i \neq 0$ after projection (all contain kin. singularities):

$$C_i^{\text{sQED}} \neq 0, \quad i \in \{1-4, 8-10, 20-22, 26-28, 32, 35\}.$$

■ However, the redundancy structure is complicated - any guiding principle?

$$\begin{split} &\Delta C_{22}^{\text{sQED}} = -\frac{\left(q_1 \cdot q_4\right) \left(q_2 \cdot q_4\right) \left(q_2 \cdot q_5\right) \left(q_3 \cdot q_4\right) \left(q_3 \cdot q_5\right)}{2 \left(q_1 \cdot q_2\right) \left(q_1 \cdot q_3\right) \left(q_2 \cdot q_3\right)} \Delta_1 - \frac{\left(q_2 \cdot q_5\right) \left(q_3 \cdot q_5\right)}{\left(q_2 \cdot q_3\right)} \Delta_4 \\ &+ \frac{\left(q_2 \cdot q_5\right) \left(q_3 \cdot q_4\right)}{\left(q_1 \cdot q_2\right)} \Delta_5 - \frac{\left(q_2 \cdot q_4\right) \left(q_3 \cdot q_4\right)}{\left(q_2 \cdot q_3\right)} \Delta_{10} - \frac{\left(q_2 \cdot q_5\right) \left(q_3 \cdot q_4\right) \left(q_3 \cdot q_5\right)}{2 \left(q_1 \cdot q_3\right) \left(q_2 \cdot q_3\right)} \Delta_{16} \\ &+ \frac{\left(q_2 \cdot q_4\right) \left(q_2 \cdot q_5\right) \left(q_3 \cdot q_4\right)}{2 \left(q_1 \cdot q_2\right) \left(q_2 \cdot q_5\right)} \Delta_{19} + \frac{\left(q_1 \cdot q_4\right) \left(q_2 \cdot q_5\right) \left(q_3 \cdot q_4\right)}{2 \left(q_1 \cdot q_2\right) \left(q_1 \cdot q_3\right)} \Delta_{20} + \frac{\left(q_2 \cdot q_5\right) \left(q_3 \cdot q_4\right)}{2 \left(q_1 \cdot q_3\right)} \Delta_{24} + \dots \end{split}$$

An intermezzo: sQED example (2)

Dramatically simplifying principle: if $C_i = 0$ after the projection, all Tarrach redundancies contributing to it will be set to zero. Extremely useful for picking Δ_i in the dispersive pole construction.

In sQED: 6 non-zero redundancies Δ₂₋₄, Δ₃₃₋₃₅ - enough to remove all kin. singularities in C_i^{sQED}.
 Affect disjoint subsets of scalar functions (redundancy families):

$$\{\Delta_{2,3,4}: C_{20-22}, C_{26-28}, C_{32}, C_{35}\}, \{\Delta_{35}: C_{2,8}\}, \{\Delta_{34}: C_{3,9}\}, \{\Delta_{33}: C_{4,10}\}.$$

Simple final result, e.g.:

$$\begin{split} C_2^{\text{sQED}} &= \left(\frac{1}{\omega_{11}} + \frac{1}{\omega_{12}}\right) \left(\frac{1}{\omega_{22}\omega_{31}} - \frac{1}{\omega_{21}\omega_{32}}\right), \\ C_8^{\text{sQED}} &= -\left(\frac{1}{\omega_{11}\omega_{12}\omega_{21}} + \frac{1}{\omega_{11}\omega_{12}\omega_{22}} + \frac{1}{\omega_{11}\omega_{12}\omega_{31}} + \frac{1}{\omega_{11}\omega_{12}\omega_{32}} + \frac{1}{\omega_{11}\omega_{21}\omega_{32}} + \frac{1}{\omega_{11}\omega_{21}\omega_{32}} + \frac{1}{\omega_{12}\omega_{22}\omega_{31}}\right), \\ \Delta_{35}^{\text{sQED}} &= \frac{2(q_2 \cdot q_3)}{\omega_{11}\omega_{12}} \left(\frac{1}{\omega_{22}\omega_{31}} + \frac{1}{\omega_{21}\omega_{32}}\right), \quad \text{with} \quad \omega_{ij} = (q_i - p_j)^2 - M_\pi^2. \end{split}$$

 \blacksquare Results above - can use to form the **F**×s**QED** part of the general soft-pole contribution.

Inspired by: J. Lüdtke, PhD thesis

Singular $\mathcal{M}^{\mu\nu\lambda}$ construction: Project $\mathrm{Im}\mathcal{M}^{\mu\nu\lambda}$ onto $\mathrm{Im}\mathcal{C}_i$ (no gauge-inv., symmetry issues). Disp. integral: get singular \mathcal{C}_i , but right im. parts. Singularities: only in $\mathrm{Re}\mathcal{M}^{\mu\nu\lambda}$.

Inspired by: J. Lüdtke, PhD thesis

Singular $\mathcal{M}^{\mu\nu\lambda}$ construction: Project $\mathrm{Im}\mathcal{M}^{\mu\nu\lambda}$ onto $\mathrm{Im}\mathcal{C}_i$ (no gauge-inv., symmetry issues). Disp. integral: get singular \mathcal{C}_i , but right im. parts. Singularities: only in $\mathrm{Re}\mathcal{M}^{\mu\nu\lambda}$.

Tarrach Δ_i : write schematically $\mathrm{Im} C_i \supset \sum_j (q_{\mathsf{a}} \cdot q_b)/(q_c \cdot q_d) \Delta_j = \sum_j \mathrm{Im} \delta C_i^j$ - construct additional real parts $\mathrm{Re} \delta \mathcal{M}_i^{\mu\nu\lambda} \Rightarrow$ use to cancel kin. singularities.

Inspired by: J. Lüdtke, PhD thesis

Singular $\mathcal{M}^{\mu\nu\lambda}$ construction: Project $\mathrm{Im}\mathcal{M}^{\mu\nu\lambda}$ onto $\mathrm{Im}\mathcal{C}_i$ (no gauge-inv., symmetry issues). Disp. integral: get singular \mathcal{C}_i , but right im. parts. Singularities: only in $\mathrm{Re}\mathcal{M}^{\mu\nu\lambda}$.

Tarrach Δ_i : write schematically $\operatorname{Im} C_i \supset \sum_j (q_a \cdot q_b)/(q_c \cdot q_d) \Delta_j = \sum_j \operatorname{Im} \delta C_i^j$ - construct additional real parts $\operatorname{Re} \delta \mathcal{M}_j^{\mu\nu\lambda} \Rightarrow$ use to cancel kin. singularities.

Problems: # of singularities < 38, Δ_i not unique \Rightarrow not a linear algebra problem. sQED toy: simplifying principles, some $\Delta_i \to 0$, but not enough to specify uniquely.

Inspired by: J. Lüdtke, PhD thesis

Singular $\mathcal{M}^{\mu\nu\lambda}$ construction: Project $\mathrm{Im}\mathcal{M}^{\mu\nu\lambda}$ onto $\mathrm{Im}\mathcal{C}_i$ (no gauge-inv., symmetry issues). Disp. integral: get singular \mathcal{C}_i , but right im. parts. Singularities: only in $\mathrm{Re}\mathcal{M}^{\mu\nu\lambda}$.

Tarrach Δ_i : write schematically $\operatorname{Im} C_i \supset \sum_j (q_a \cdot q_b)/(q_c \cdot q_d) \Delta_j = \sum_j \operatorname{Im} \delta C_i^j$ - construct additional real parts $\operatorname{Re} \delta \mathcal{M}_i^{\mu\nu\lambda} \Rightarrow$ use to cancel kin. singularities.

3

Problems: # of singularities < 38, Δ_i not unique \Rightarrow not a linear algebra problem. sQED toy: simplifying principles, some $\Delta_i \to 0$, but not enough to specify uniquely.

4

Group Δ_i , C_i in isolated subsets, cancel $1/(q_i\cdot q_j)^n$ with Δ_i sQED-inspired ansatzes. Each Tarrach real part $\mathrm{Re}\delta\mathcal{M}_j^{\mu\nu\lambda}$ - multiple singularities if e.g. we find Δ_i that cancels $1/(q_1\cdot q_2)$, make sure that $1/(q_2\cdot q_3)$ -piece also finite. Rather tedious.

Inspired by: J. Lüdtke, PhD thesis

Singular $\mathcal{M}^{\mu\nu\lambda}$ construction: Project $\mathrm{Im}\mathcal{M}^{\mu\nu\lambda}$ onto $\mathrm{Im}\mathit{C}_i$ (no gauge-inv., symmetry issues). Disp. integral: get singular C_i , but right im. parts. Singularities: only in $\mathrm{Re}\mathcal{M}^{\mu\nu\lambda}$.

Tarrach Δ_i : write schematically $\operatorname{Im} C_i \supset \sum_j (q_a \cdot q_b)/(q_c \cdot q_d) \Delta_j = \sum_j \operatorname{Im} \delta C_i^j$ - construct additional real parts $\operatorname{Re} \delta \mathcal{M}_i^{\mu\nu\lambda} \Rightarrow$ use to cancel kin. singularities.

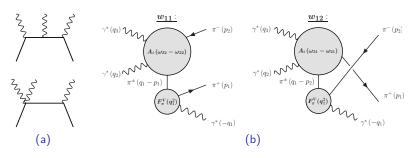
Problems: # of singularities < 38, Δ_i not unique \Rightarrow not a linear algebra problem. sQED toy: simplifying principles, some $\Delta_i \to 0$, but not enough to specify uniquely.

4

Group Δ_i , C_i in isolated subsets, cancel $1/(q_i\cdot q_j)^n$ with Δ_i sQED-inspired ansatzes. Each Tarrach real part $\mathrm{Re}\delta\mathcal{M}_j^{\mu\nu\lambda}$ - multiple singularities if e.g. we find Δ_i that cancels $1/(q_1\cdot q_2)$, make sure that $1/(q_2\cdot q_3)$ -piece also finite. Rather tedious.

Status: pole pieces fully computed, tested with SU(2) χPT at NLO.

$F \times sQED$ vs dispersive construction



- How does LO F×sQED (a) compare with our (appropriately-crossed) dispersive result (b), with only π -pole of $\gamma^*\gamma^* \to \pi^+\pi^-$?
- **Difference is purely real** in all 6 π -pole channels!
- **Beyond pole-pole:** need full Compton tensor f-ions A_i , non-pole pieces.
- Note: our result not unique! Could have disp. pole \equiv F×sQED, but have no control over it during construction.

Therefore, F×sQED is a reasonable starting point for $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$ evaluation! However, with $\pi^+\pi^-$ in P-wave, hadronic resonance effects may be significant.

Conclusions

- $\gamma^* \gamma^* \gamma \to \pi^+ \pi^-$ subprocess may shine light into reducing uncertainties in **both HVP and HLbL contributions.**
- Current focus on the soft- γ limit **spin-2 contributions to HLbL.** General case for HVP future goal.
- Constructed the soft-singular pion-pole part of $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$ shown that F×sQED is a valid starting point for the theory input at radiative-return experiments.
- \blacksquare Hadronic resonances may be a relevant effect effects in soft- γ limit under investigation.

Conclusions

- $\gamma^* \gamma^* \gamma \to \pi^+ \pi^-$ subprocess may shine light into reducing uncertainties in **both HVP and HLbL contributions.**
- \blacksquare Current focus on the soft- γ limit spin-2 contributions to HLbL. General case for HVP future goal.
- Constructed the soft-singular pion-pole part of $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$ shown that F×sQED is a valid starting point for the theory input at radiative-return experiments.
- \blacksquare Hadronic resonances may be a relevant effect effects in soft- γ limit under investigation.

Thank you for your attention!