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Setup and kinematics e (p)) + e~(py) + 1(p3) + r¥(ps) > 0

» We want to compute the 2-loop
amplitude for eTe™ — yy* with massive

Y #
electrons er

»pi=py=m’ p;=0, p;=q° B

» 4 variables: x := {S, t. m2, qz}

» We need to compute Feynman integrals

in dimensional regularisation:
d=4-2¢ <



Integral families

» Integrals grouped in sectors by their set of denominators

» Amplitudes: all scalar products k; - p; and ; - k; expressed in terms of denominators

—> Beyond one-loop we need irreducible scalar products (ISPs). Here: 2 ISPs
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Our integral families

PL,

PL,

PL,

+ non-planars



Master integrals and differential equations

» Integral families have a finite basis of master integrals (MIs)

» MlIs satisfy linear differential equations (DEs)
057(55; e) = B(X; €) - I(%; )

» Eventually, we want to solve the DEs fully numerically = fast evaluation, can be
implemented in a Monte Carlo generator

» Complexity of the DEs depends on the basis
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) [Complexity of the DEs depends on the basis:]
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Basis choice is key part of the calculationsﬂ




Structure of the DEs

> In general, the matrices B.(X; €)

* Contain only rational functions

* Mix € and the kinematics
* Have spurios poles

» General strategy

1. Select “good” starting basis /

-

2. Gauge transformation / —» T+ [
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Structure of the DEs
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[Bad for numerical methods]

» Contain only rational functions /
'« Mix € and the kinematics

> In general, the matrices B.(X; €)
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* Have spurios poles
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» General strategy
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1. Select “good” starting basis 1

! Gauge transformation ] > T-1
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Optimal (?) basis
[Henn 2014]: DEs in canonical form (no general algorithm)

dI(Ge) = e I(%; €)

ione-forms with at |
[most simple poles |

* No spurious poles

» e-dependence factorises: solution at each order depends only on previous order

» In the best understood cases the one-forms are logarithmic

Letters: algebraic functions|



Integrand analysis

» The type of functions that appear in the solution and in T depend on the
differential forms of my integrand:

[ ~ [dfl(Z) A ... AdfK(Z)

» Connection to geometry: one-forms are defined over some manifold

» We can easily analyse the geometry of an integral in the Baikov representation



Logarithmic case is well understood

» One-loop problems, massless
propagators

» Geometry: punctured Riemann sphere @'b’é

» Starting basis linear in &

» Canonical basis through gauge

transformation 7 involving only rational
functions and simple square roots



» Massive propagators
» Geometry: torus

» Starting basis:

[Chaubey, Sotnikov 2025]?

Elliptic case

r
(

* Quadratic in € relatively easy to get
» Conjecture: algebraic basis linear in € s \<

s

=2

» Canonical basis: matrix 7 involves

transcendental functions
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How we deal with elliptic integrals

Goal: obtain a good basis without introducing transcendental functions

» Simple e-dependence

* No poles

* Maximum degree as low as possible (2 in this case)
» We choose finite elliptic Mls

* Poles of the amplitude do not contain elliptic functions

* Allows us to apply dlog techniques up to the last order in the e-expansion

11



Representation of the DEs

» The entries that do not involve elliptic integrals are e-factorised and contain only
logarithmic one-forms

» The DEs are free of spurious poles
» Compact representation:

dIFe) = dAPFe) - IRe),  dADGEe) = Z k[z cPd log(W,(X)) + Z d ()
k=0

» The one-forms oF

* Are linearly independent

* Are chosen in such a way that the polynomial degrees are minimised

12



Evaluation strategy: short term

» Evaluation through generalised series expansion method
» Easy to set up: requires boundary point (e.g. AMFlow [Liu, Ma 2022]) and DEs

» Sensitive to singularities of DEs = “safer” than fully numerical approach

» Performance
» DiffExp [Hidding 2020]: order few minutes based on experience
» AMF1low DE solver: factor 10 gain for other processes

» LINE [Prisco et al. 2025]: C++ based, expected to be faster but still unstable
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Evaluation strategy: medium term

» Fully numerical solution, using Pau’s code
* Expected to be faster (order of milliseconds per point)
* Can be incorporated in a MC generator
» Requires some optimisations
 Special functions to reduce redundancy (requires knowledge of the amplitude)

* Polishing of the one-forms
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Status of the calculation

» Planar families:
» PL, ready

» PL, and PL; missing only a few integrals
» Non-planar:
* Planar sub-sectors from planar families

» Expect only few genuinely new integrals
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Conclusion and outlook

» The computation of the 2-loop amplitude requires a fast and reliable way to
evaluate the Feynman integrals

» We are constructing DEs for the master integrals, addressing the complications
related to the presence of elliptic Feynman integrals

» Next steps

* Planar families

» N;- part of the amplitude

* Non-planar families

* 2-loop amplitude
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» The computation of the 2-loop amplitude requires a fast and reliable way to
evaluate the Feynman integrals
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Backup slides



The solution space is redundant

o) = ) e I
w=0

» Not all I].(W)()_c’) are independent!

» Example:

2

|
= 1 — elog(m?) + 82(% + > log(mz)z) + O(&)

» Goal: write the solution in terms of a set of algebraically independent functions
* Faster evaluation of DEs
* Analytic cancellation of poles

* Significant simplification of the amplitude
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Generalised series expansion methods

| Target point outside {
i the physical region |

Physical region

Branch cut of the DEs|

—

— Target point in the
;; physical region |

G~ Gy+ Y A, log(t— )t — o)
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The geometry is not obvious

/ \

Logarithmic Elliptic



