
RMCL2, 14/11/2025

Evaluation of two-loop Feynman 
integrals for e+e− ⟶ γγ*

Mattia Pozzoli 
In collaboration with William Torres Bobadilla

1



Setup and kinematics

‣We want to compute the 2-loop 
amplitude for  with massive 
electrons 

‣  

‣ 4 variables:  

‣We need to compute Feynman integrals 
in dimensional regularisation: 

e+e− → γγ*

p2
1 = p2

2 = m2, p2
3 = 0, p2

4 = q2

⃗x := {s, t, m2, q2}

d = 4 − 2ε
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e+(p1) + e−(p2) + γ(p3) + γ*(p4) → 0
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Integral families
 

‣ Integrals grouped in sectors by their set of denominators 

‣ Amplitudes: all scalar products  and  expressed in terms of denominators 

 Beyond one-loop we need irreducible scalar products (ISPs). Here: 2 ISPs

Ga1,…,a9
= ∫ ddk1ddk2

1
Da1

1 ⋯Da9
9

, (a1, …, a9) ∈ ℤ9

ki ⋅ pj ki ⋅ kj

⟹
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Inverse propagators of Feynman integrals 

Dj = l2
j − m2

j



Our integral families
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Master integrals and differential equations
‣ Integral families have a finite basis of master integrals (MIs) 
‣MIs satisfy linear differential equations (DEs) 

 

‣ Eventually, we want to solve the DEs fully numerically  fast evaluation, can be 
implemented in a Monte Carlo generator 
‣ Complexity of the DEs depends on the basis

∂ξ ⃗I( ⃗x; ε) = Bξ( ⃗x; ε) ⋅ ⃗I( ⃗x; ε)

⟹
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Basis choice is key part of the calculations!



Structure of the DEs
‣ In general, the matrices  

• Contain only rational functions 

• Mix  and the kinematics 

• Have spurios poles 
‣ General strategy 

1. Select “good” starting basis  

2. Gauge transformation  

Bξ( ⃗x; ε)

ε

⃗I
⃗I → T ⋅ ⃗I

Bξ → (T ⋅ Bξ + ∂ξT) ⋅ T−1
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Bad for numerical methods

Makes the DEs “nicer”, but 
introduces new functions



Optimal (?) basis
[Henn 2014]: DEs in canonical form (no general algorithm) 

 

• No spurious poles 

• -dependence factorises: solution at each order depends only on previous order 

‣ In the best understood cases the one-forms are logarithmic 

d ⃗I( ⃗x; ε) = ε dÃ( ⃗x) ⃗I( ⃗x; ε)

ε

dÃ( ⃗x) = ∑
i

a(i) d log Wi( ⃗x)
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one-forms with at 
most simple poles

Letters: algebraic functions



Integrand analysis
‣ The type of functions that appear in the solution and in  depend on the 

differential forms of my integrand: 

 

‣ Connection to geometry: one-forms are defined over some manifold 
‣We can easily analyse the geometry of an integral in the Baikov representation

T

I ∼ ∫ df1( ⃗z) ∧ … ∧ df2( ⃗z)
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Logarithmic case is well understood
‣ One-loop problems, massless 

propagators 
‣ Geometry: punctured Riemann sphere 

‣ Starting basis linear in  

‣ Canonical basis through gauge 
transformation  involving only rational 
functions and simple square roots

ε

T
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Elliptic case
‣Massive propagators 
‣ Geometry: torus 
‣ Starting basis: 

• Quadratic in  relatively easy to get 

• Conjecture: algebraic basis linear in  
[Chaubey, Sotnikov 2025]? 

‣ Canonical basis: matrix  involves 
transcendental functions

ε

ε

T
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How we deal with elliptic integrals

‣ Simple -dependence 

• No poles 

• Maximum degree as low as possible (2 in this case) 
‣We choose finite elliptic MIs 

• Poles of the amplitude do not contain elliptic functions 

• Allows us to apply dlog techniques up to the last order in the -expansion

ε

ε
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Goal: obtain a good basis without introducing transcendental functions



Representation of the DEs
‣ The entries that do not involve elliptic integrals are -factorised and contain only 

logarithmic one-forms 
‣ The DEs are free of spurious poles 
‣ Compact representation: 

 

‣ The one-forms  

• Are linearly independent 

• Are chosen in such a way that the polynomial degrees are minimised 

ε

d ⃗I( ⃗x; ε) = dA(F)( ⃗x; ε) ⋅ ⃗I( ⃗x; ε), dA(F)( ⃗x; ε) =
2

∑
k=0

εk[∑
α

c(F)
kα d log(Wα( ⃗x)) + ∑

β

d(F)
kβ ωβ( ⃗x)]

ωβ
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Evaluation strategy: short term
‣ Evaluation through generalised series expansion method 

• Easy to set up: requires boundary point (e.g.  [Liu, Ma 2022]) and DEs 

• Sensitive to singularities of DEs  “safer” than fully numerical approach 

‣ Performance 

•  [Hidding 2020]: order few minutes based on experience 

•  DE solver: factor 10 gain for other processes 

•  [Prisco et al. 2025]: C++ based, expected to be faster but still unstable

𝙰𝙼𝙵𝚕𝚘𝚠

⟹

𝙳𝚒𝚏𝚏𝙴𝚡𝚙

𝙰𝙼𝙵𝚕𝚘𝚠

𝙻𝙸𝙽𝙴
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Evaluation strategy: medium term
‣ Fully numerical solution, using Pau’s code 

• Expected to be faster (order of milliseconds per point) 

• Can be incorporated in a MC generator 
‣ Requires some optimisations 

• Special functions to reduce redundancy (requires knowledge of the amplitude) 

• Polishing of the one-forms
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Status of the calculation
‣ Planar families: 

•  ready 

•  and  missing only a few integrals 

‣ Non-planar: 

• Planar sub-sectors from planar families 

• Expect only few genuinely new integrals

PL1

PL2 PL3
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Conclusion and outlook
‣ The computation of the 2-loop amplitude requires a fast and reliable way to 

evaluate the Feynman integrals 
‣We are constructing DEs for the master integrals, addressing the complications 

related to the presence of elliptic Feynman integrals 
‣ Next steps 

• Planar families 

•  - part of the amplitude 

• Non-planar families 

• 2-loop amplitude

Nf
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Thank you!



Backup slides
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‣ Not all  are independent!  

‣ Example: 

‣ Goal: write the solution in terms of a set of algebraically independent functions 

• Faster evaluation of DEs 

• Analytic cancellation of poles 

• Significant simplification of the amplitude

Ij( ⃗x; ε) =
4

∑
w=0

εw I(w)
j ( ⃗x)

I(w)
j ( ⃗x)

The solution space is redundant

18

= 1 − ε log(m2) + ε2( π2

12
+

1
2

log(m2)2) + 𝒪(ε3)k2 − m2
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Generalised series expansion methods
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Target point in the 
physical region

Target point outside 
the physical region

Boundary point

Physical region

Branch cut of the DEs
⃗G ∽ ⃗G0 + ∑ Ãt log(t − τ)k1(t − τ)k2



The geometry is not obvious
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