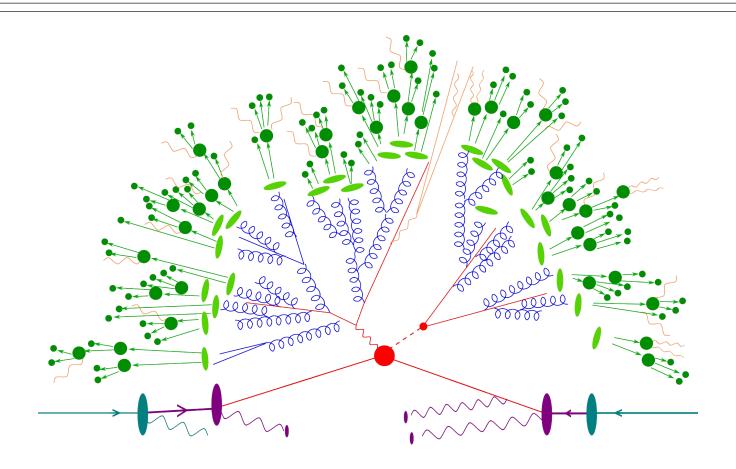
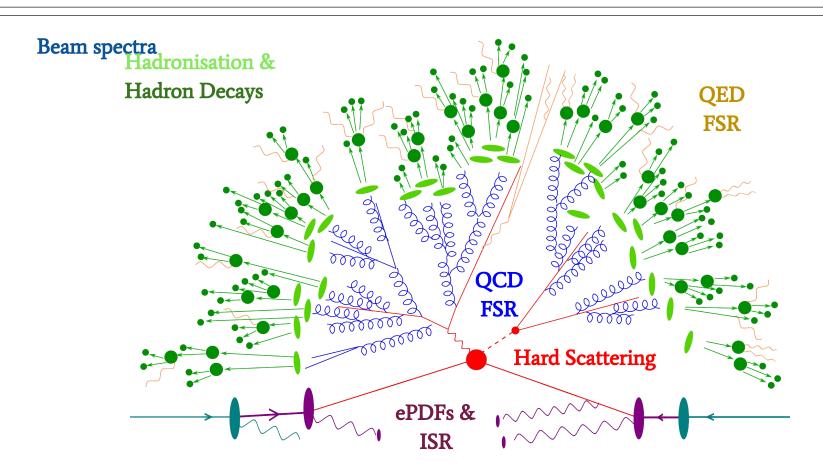

The new Sherpa 3.0 event generator

Alan Price*, Lois Flower on behalf of the Sherpa collaboration




Monte Carlo event generators

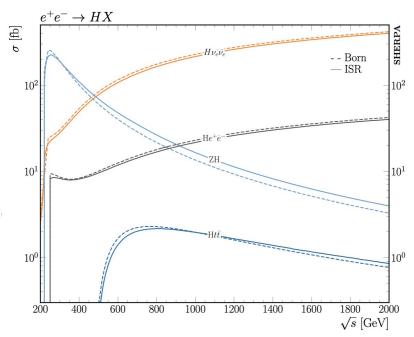
Monte Carlo event generators for LC

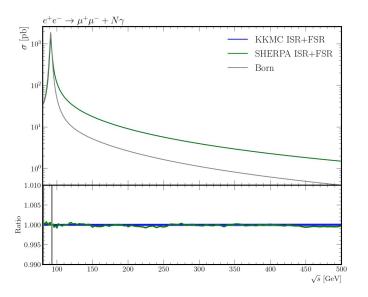
Monte Carlo event generators for LC

Good things come to those who wait

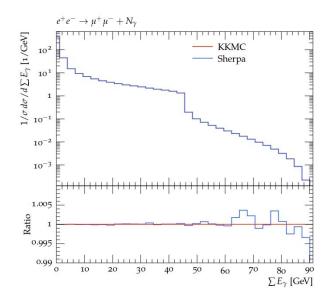
https://sherpa-team.gitlab.io/

Condensing the work of the last >5 years

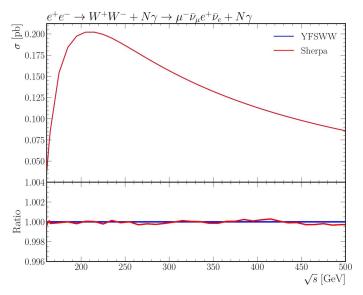

- new physics features
- more intuitive user interface
- more efficient CPU footprint
- modern build system
- comprehensive validation suite

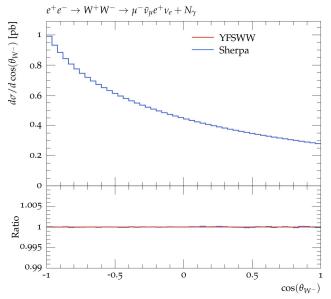


New in Sherpa 3.0: Real photon emissions in the initial state! [Krauss, Schönherr, Price 2022]


- Extension of Sherpa YFS module for soft photon resummation in final state [Krauss, Schönherr 2008]
- Supplemented with collinear logs up to $O(\alpha^3L^3)$
- Complete treatment of muti-photon kinematics:
 Explicit photons, no simplified electron PDF
- Matching to full NLO EW complete [Krauss,Pric tbp]
- NNLO Matching underway

KKMC: LEP Era YFS MC for e+e--> ffbar Comput.Phys.Commun. 130 (2000) 260-325


Superb agreement in σ over a range of \sqrt{s}


Excellent agreement in the photon kinematics

YFSWW: LEP Era YFS MC for e+e--> WW

Comput.Phys.Commun. 140 (2001) 475-512

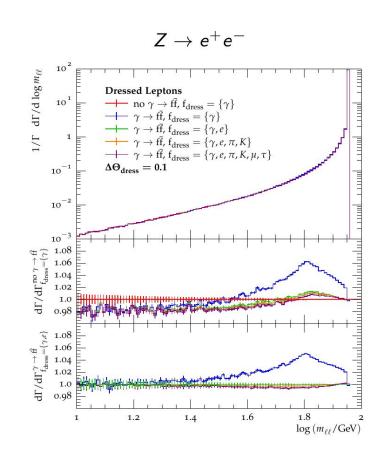
Superb agreement in σ over a range of \sqrt{s}

Excellent agreement in the W kinematics

QED FSR: Photons splitting into fermions

[Flower, Schönherr 2023]

Yennie-Frautschi-Suura soft-photon resummation does not include $\gamma \to f^+ f^-$ corrections which enter at $\mathcal{O}(\alpha^2)$


Yennie, Frautschi, Suura '61; Krauss, Schönherr '08

Collinear QED evolution:

- reconstruct starting scale of every photon
- evolve in parton shower picture until every photon virtuality drops below $4m_a^2$
- ⇒ effect only corrections beyond YFS resummation

Dressing algorithm:

- lepton dressing ambiguous beyond photon FSR
- → include secondary flavours? if yes, some, or all?
- depending on dressing algorithm, more or less energy may be recombined into dressed lepton

Connection with QED ISR underway!
[Flower, Price]

- Available in one of Sherpa's ME generators (AMEGIC)
 - Recently resurrected for Sherpa 3
- Reweight the ME with pol factor (1+P),(1-P)
- Validated against Madgraph/Whizard
- Automatically included in YFS: Soft photons blind to spin!

$P_{e^-} \ P_{e^+} \ \%$	MadGraph	Sherpa	
0 0	2100.0(0.72)	2099.5(0.09)	
0 60	1825.0(0.63)	1824.1(0.08)	
0 80	1733.0(0.66)	1732.3(0.08)	
0 -60	2375.0(0.67)	2375.0(0.11)	
0 -80	2466.0(0.72)	2466.9(0.11)	
60 0	2375.0(0.67)	2375.0(0.11)	
60 60	1344.0(0.46)	1343.7(0.06)	
60 80	1000.0(0.35)	1000.0(0.04)	
60 -60	3406.0(0.97)	3406.4(0.15)	
60 -80	3749.0(1.11)	3750.1(0.17)	
80 0	2466.0(0.72)	2466.9(0.11)	
80 60	1184.0(0.36)	1183.6(0.05)	
80 80	756.0(0.26)	755.8(0.03)	
80 -60	3749.0(1.11)	3750.1(0.17)	
80 -80	4177.0(1.24)	4177.9(0.18)	

Table 1: Polarized cross-section for $e^+e^-\to \mu^+\mu^-$ at 91.2 GeV. The results are quoted in fb.

BEAMS:

- 11

- -11

POLARIZATIONS:

BEAM_1: 0.3

BEAM_2: -0.8

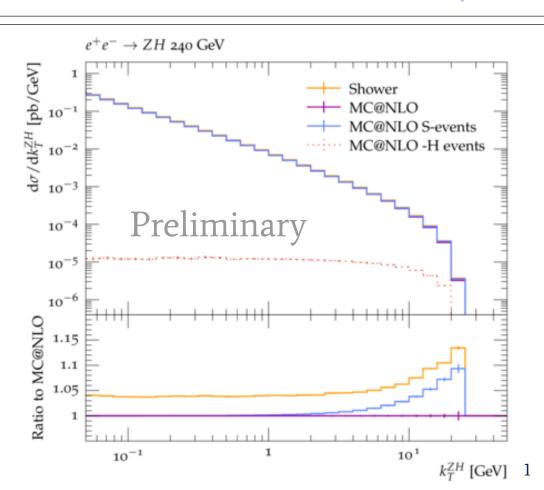
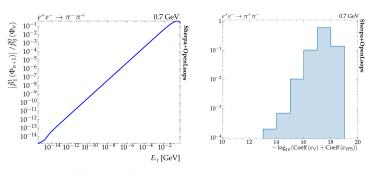
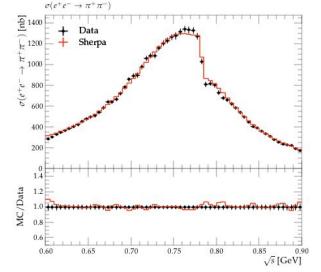

P_{e^-} P_{e^+} %	MadGraph	Sherpa	
0 0	0.2402	0.2402	
0 60	0.2086	0.2086	
0 80	0.1981	0.1981	
0 -60	0.2718	0.2718	
0 -80	0.2823	0.2823	
60 0	0.2086	0.2086	
60 60	0.1537	0.1537	
60 80	0.1144	0.1144	
60 -60	0.3899	0.3898	
60 -80	0.4292	0.4292	
80 0	0.1981	0.1981	
80 60	0.1354	0.1354	
80 80	0.08647	0.0865	
80 -60	0.4292	0.4292	
80 -80	0.4782	0.4781	

Table 1: Polarized cross-section for $e^+e^- \to HZ$ at 250 GeV. The results are quoted in fb.

QED MC@NLO [Flower, Schönherr tbp]


- Automated matching of NLO EW and QED parton shower
- FSR validated against YFS
- TBP: validation against FO
- In progress: validation against initial-state YFS
- Method is extremely general,
 many applications to be studied
- Planned public release 3.x



- LO pion production easily combined with YFS or structure function
- Matching to complete NLO done [A.P. F. Krauss]
 - Extension to NNLO underway [S. Delorme, J. Gluza, A.P., N.Salone, A. Siodmok]
- e+e- →2pi can be combined with QED parton shower for ISR and FSR (scalar splitting functions) [L. Flower]
- Extension to matched NLO+PS fairly trivial to build on fixed-order NLO
- New Flexible Form-Factor
- Interface to alphaQED
- Additional Final states are being added e.g Kaons, Protons....

- Sherpa 3.0.2 released
 - Download and information on Sherpa homepage: https://sherpa-team.gitlab.io/
 - New user interface (YAML language)Give it a try!

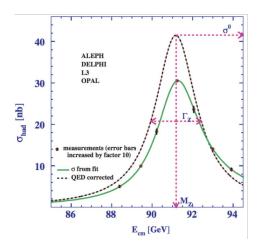
- Sherpa's LHC expertise carries over to low-energy e+e-
 - Additionally dedicated developments
- NEW: automated YFS for state-of-the-art QED corrections [Alan Price]

SHERPA

▶ NEW: photon \rightarrow lepton splittings in YFS [Lois Flower]

```
EVENT GENERATION MODE: Weighted
BEAMS: [11,-11]
BEAM ENERGIES: 1.02/2
ME GENERATORS: [Comix, Recola]
PROCESSES:
- 11 -11 -> 13 -13:
    Order:
      EW: 2
      OCD: 0
YFS:
  BETA: 1
  MODE: ISR
  IR CUTOFF: 1e-6
PARTICLE DATA:
  11:
    Massive: 1
    Mass: 0.0005109989500
  13:
    Mass: 0.1056583755
```


Backup



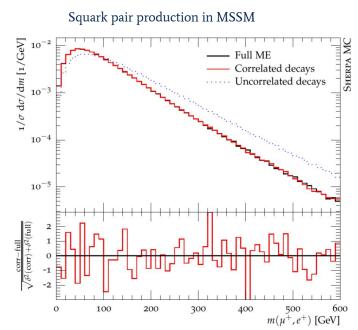
- Factor 2-100 improvement in the measurement of EWPOs
- 0.1% errors which could be ignored at LEP will be dominant at future e+e- machines
- On the theoretical side this translates into a much more sophisticated modelling
 - Fixed Order Improvements

Observable	Where from	Current (LEP)	FCC (stat.)	FCC (syst.)	Now FCC
M_Z [MeV]	Z linesh. [32]	$91187.5 \pm 2.1\{0.3\}$	0.005	0.1	3
$\Gamma_Z [\text{MeV}]$	Z linesh. [32]	$2495.2 \pm 2.1\{0.2\}$	0.008	0.1	2
$R_l^Z = \Gamma_h/\Gamma_l$	$\sigma(M_Z)$ [33]	$20.767 \pm 0.025 \{0.012\}$	$6 \cdot 10^{-5}$	$1 \cdot 10^{-3}$	12
$\sigma_{ m had}^0[{ m nb}]$	$\sigma_{\rm had}^{0} [32]$	$41.541 \pm 0.037 \{0.025\}$	$0.1 \cdot 10^{-3}$	$4 \cdot 10^{-3}$	6
$N_{ u}$	$\sigma(M_Z)$ [32]	$2.984 \pm 0.008 \{0.006\}$	$5 \cdot 10^{-6}$	$1 \cdot 10^{-3}$	6
N_{ν}	$Z\gamma$ [34]	$2.69 \pm 0.15 \{0.06\}$	$0.8 \cdot 10^{-3}$	$< 10^{-3}$	60
$\sin^2 \theta_W^{eff} \times 10^5$	$A_{FB}^{lept.}$ [33]	$23099 \pm 53\{28\}$	0.3	0.5	55
$\sin^2 \theta_W^{eff} \times 10^5$	$\langle \mathcal{P}_{\tau} \rangle, A_{\mathrm{FB}}^{pol,\tau}[32]$	$23159 \pm 41\{12\}$	0.6	< 0.6	20
M_W [MeV]	ADLO [35]	$80376 \pm 33\{6\}$	0.5	0.3	12
$A_{FB,\mu}^{M_Z\pm3.5{\rm GeV}}$	$\frac{d\sigma}{d\cos\theta}$ [32]	$\pm 0.020\{0.001\}$	$1.0\cdot 10^{-5}$	$0.3 \cdot 10^{-5}$	100

[Jadach, Skrzypek, Eur. Phys. J. C79(2019)]

$$d\sigma(L,\hat{L}) = \alpha^k \sum_{n=0}^{\infty} \alpha^n \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \hat{\sigma}_{n,i,j} L^i \hat{L}^j$$

$$\hat{L} = \log\left(\frac{Q^2}{E_{\gamma}^2}\right)$$
 $L = \log\left(\frac{Q^2}{m_e^2}\right)$


Soft Log

Collinear Log

BSM models: UFO interface

- Dream of phenomenologists or experimentalists: From a model's Lagrangian $L \rightarrow$ simulated event samples
- Important ingredient: UFO standard to automatically transfer Feynman rules (from FeynRules, SARAH, ...) into event generators
- Sherpa interface available for a while [Höche, Kuttimalai, Schumann, FS 2014]
 - New in Sherpa 3.0.0: UFO 2.0 interface with more flexibility, e.g. with form factors
 - Automatic decay tables/chains
 - Spin correlations
 - Effective field theories (SMEFT, HEFT) via UFO model

