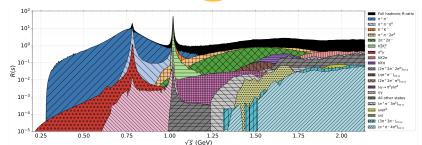
Updates from the 8th Plenary Workshop of the Muon g-2 Theory Initiative (Orsay 2025)


Aidan Wright

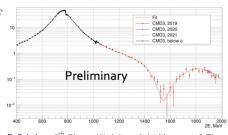
Science and Technology Facilities Council

LEVERHULME TRUST_____

- This presentation focuses on what I prioritised, presuming it to be interesting to the group (and had my own detailed notes on).
- Covered in detail:
 - Updated experimental measurements and collaboration plans.
 - Dispersive g − 2 updates.
- Covered in less detail.
 - Developments concerning τ data.
 - Lattice HVP
 - HLbL lattice and dispersive.

Apologies!

CMD-3/BESIII/Belle II

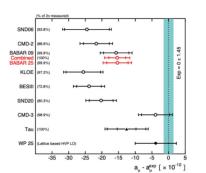


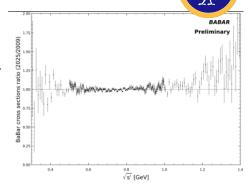
CMD-3

- Presently no $\pi^+\pi^-$ updates. Working on > 1 GeV at $0.8\% \rightarrow 7\%$.
- No complete CMD-2/3 difference explanation.
- At > 1 fb⁻¹, plan more scans below 1 GeV (down to ~ 0.4 GeV).
- Planned upgrade to measure $\sigma[\pi^+\pi^-]$ to FNAL precision.

BESIII

- ISR study for $0.3 \rightarrow 1 \text{ GeV } \pi^+\pi^-$.
- Expected 0.5% precision.
- Blinded analysis on $\psi(3770)$ and $D_s\overline{D}_s^*$ datasets.
- Also measuring R < 2 GeV and on charm.


E. Solodov - 8^{th} Plenary Workshop of the Muon g-2 TI


Belle II

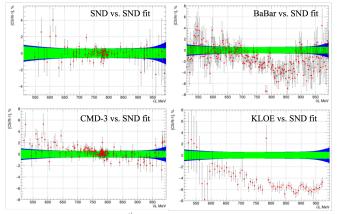
- Targeting 0.5% $\pi^+\pi^-$ on 427 fb⁻¹.
- Successfully sanity checked (reasonable data-MC agreement on subsample).
- Potentially within 2 years?

BaBar

- Used full 460 fb⁻¹ dataset.
- Entirely new method angular fit on $\cos \theta^*$; angle between π^- and ISR γ . Looser track cut.
- Used PHOKHARA rather than AfkQED.
- Blinded analysis.
- Phenomenal agreement with BaBar09.
 Average in preparation.

Energy range [GeV]	2025 $(a_{\mu}^{\pi\pi} \pm \text{stat} \pm \text{syst} [10^{-10}])$	2009 $(a_{\mu}^{\pi\pi} \pm \text{stat} \pm \text{syst} [10^{-10}])$
Below 0.5	$58.0 \pm 5.5 \pm 1.7$	$57.6 \pm 0.6 \pm 0.6$
0.5 - 1.4	$456.2 \pm 2.2 \pm 1.7$	$455.6 \pm 2.1 \pm 2.6$

Energy range [GeV]	2025–2009 average (preliminary) $a_{\mu}^{\pi\pi}$ [10 ⁻¹⁰]
Below 0.5	58.2 ± 0.8
0.5 - 1.4	455.9 ± 2.1
Below 1.4	514.1 ± 2.5
Below 1.8 (1.4 - 1.8 from 2009)	514 4 + 9 5


A. Pinto - 8^{th} Plenary Workshop of the Muon g-2 TI

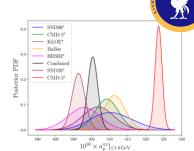
SND

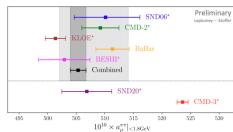
- Unknown $2 \rightarrow 3\%$ effect in SND20 dataset \Longrightarrow superseded.
- New (blinded?) dataset at $\sim 0.7\%$ precision.

- Higher than SND20.
- Comparable to CMD-3 ($\sim 0.5\sigma$).
- Consistently above BaBar on ρ-peak $(\sim 2\sigma)$.

A. Kupich - 8^{th} Plenary Workshop of the Muon g-2 TI

CHKLS Recent Work

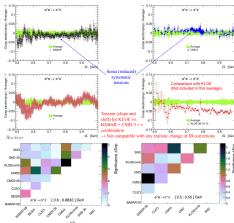

$$F_{\pi}^{V}(s) = \underbrace{\Omega_{1}^{1}(s)}_{2 \; ext{param.s}} imes \underbrace{G_{\omega(\phi)}(s)}_{3(6) \; ext{param.s}} imes G_{ ext{in}}(s)$$


• Improved inelastic function:

$$G_{\text{in}}(z) = rac{1}{\phi(z)} rac{P_{\mathcal{N}}(z)}{\prod_{j}(z-z_{j})(z-z_{j}^{*})}$$

for OF $\phi(s)$, polynomial P_N and poles s_j .

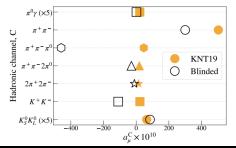
- Bayesian parameter interference for improved fitting.
- Exacerbated CMD-3 tension.
- Strong correlation of lattice windows
 further issues with hybrid.
- Discussion of 'most conservative' use of systematics in CHKLS framework.



T. Leplumey - 8^{th} Plenary Workshop of the Muon g-2 TI

DHMZ Recent Work

- Significant effort to better understand tensions.
- Data from τ , BaBar and CMD-3:
 - Had proposed combinations based on these data.
 - Prior to interference concern, agreement was quite good...
- Volodymyr Biloshystkyi et al.:
 - Work on HVP γ (FSR) dispersive-lattice comparisons.
 - Found considerable interference terms for 'dispersive diagram interpretation' necessary for comparisons.
 - **Significant** implications for τ IBCs.
- Local tensions assessment:
 - Measurements exhibit different levels of tension in different regions.
 - Most significant tensions are on and above ρ peak.
 - Datasets are compatible at low energies.


B. Malaescu - 8^{th} Plenary Workshop of the Muon g-2 TI

KNTW Recent Work

Blinded New Analysis

- Current tensions ⇒ need to be certain making best analysis choices.
- KNTW new analysis: mitigate/quantify any biases from analysis choices.
- Certainty of optimal choices: blind with

$$a_{\mu}^{ ext{blind}}[i] = rac{1}{4\pi^3} \int_{s_{th}}^{\infty} ds \Big\{ \sigma_i^0(s) \mathcal{K}_{\mu}(s) \, \mathcal{B}_i(s) \Big\}$$

"Re-Baselining"

- (*Minor*) KNT19 corrections.
- 'Completions' of KNT19 analysis.
- KNT19 method systematics estimated.

FSR Studies

- Revisited $K\bar{K}$ confident in KNT19 conclusions for scan experiments.
- Looking at 3π with input of MH.
- New inclusive channel FSR \sim 20% reduction in error on $\Delta\alpha_{\rm had}^{(5)}$.
- Moving onto 2π soon...

Correlation Study

- Highly relevant analysis choice use of systematic correlations.
- Study to quantify additional systematic
 small effect.
- Favouring KLOE vs BaBar in 2020 combination down to BaBar statistics

Lattice QCD/Hadronic Light by Light/Other

Lattice QCD

- Groups looking in more detail at isospin-breaking and long-distance contributions.
- Typically aiming for $\sim 0.5\%$ precision.
- Cross checks at different scales/in different schemes.
- Hybrids:
 - BMW/DMZ going ahead with hybrid very low energy dispersive data used to supplement lattice long distance.
 - Hybrid ultimately seems likely to optimise precision at next WP.
 - However, tensions still need to be tamed.
- Also looking at R-ratio, NLO.

Hadronic Light by Light

- Good agreement between dispersive and lattice HLbL.
- Lattice systematically higher, potentially due to tensor and excited states.
 - These tensor parts still need to be calculated dispersively; methods suffer from ambiguities or missing processes.
 - Lattice focusing on a sign discrepancy of $\pi^0 \to \gamma \gamma$ disconnected, working on other small improvements.
- Aiming for more detailed lattice/dispersive comparisons.

Other

- Improved pQCD below charm: duality violations ⇒ better agreement with low \sqrt{s} data.
- BESIII individually discrepant but not overly influential in combination.

Theory Initiative Next Steps

- Focus groups/task forces being set up.
 - Thorough cross examination of new major cross section measurements (c.f. CMD-3 $\pi^+\pi^-$).
 - Use of systematic uncertainties/correlations.
 - Tau isospin breaking corrections.
 - Work with RadioMonteCarLow2.
 - Improved dispersive/lattice HLbL combination.
- Conflict resolution procedures brought in Steering Committee will resolve conflicts if all else fails.
- Open letter to support JPARC g-2 (& reinforce WP25 conclusions about next steps).