

Gravitational Waves

Particle Astrophysics Town Hall Meeting

Laura K Nuttall UKRI Future Leaders Fellow University of Portsmouth

Gravitational Wave Spectrum

Gravitational Wave Spectrum

~180 scientists in the UK working in the **LIGO Scientific Collaboration**

(AERDYD)

UNIVERSITY OF BIRMINGHAM

R. Abbott et al., **GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run**, arXiv 2010.14527 (2020)

R. Abbott et al., **GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run**, arXiv 2010.14527 (2020)

R. Abbott et al., **GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run**, arXiv 2010.14527 (2020)

50 GW events

GW190521: Most massive binary system

The masses of the two compact objects: m1: 73.9 - 120.7 M $_{\odot}$ m2: 46.1 - 87.5 M $_{\odot}$

Remnant mass ~ 150 M_☉ Remnant is an intermediate black hole!

Black holes between ~65 -120 M_{\odot} cannot form from the collapse of a massive star

Either:

- our understanding of stellar evolution is wrong and stars *can* form high mass black holes
- black hole formed as a result of a previous merger

Multiple merger scenario requires the system to form in dense environment with other black holes nearby

GW190521: Most massive binary system

Advanced LIGO UK project provided the core ultra-low noise mirror suspensions based on fused-silica technology

Class. Quantum

Grav. 31 025017 (2014)

GW190521: Most massive binary system

Advanced LIGO UK project provided the core ultra-low noise mirror suspensions based on fused-silica technology

Key to detecting signals where energy is concentrated < 100 Hz

Penultimate silica mass, 40 kg

Silica test mass, 40 kg

Outer me

structure

	01	O 2	— O3	- O4 - O	5
LIGO	80 Mpc	100 Мрс	110-130 Mpc	160-190 Mpc	Target 330 Mpc
Virgo		30 Mpc	50 Mpc	90-120 Mpc	150-260 Mpc
KAGRA			8-25 Mpc	25-130 Mpc	130+ Mpc
LIGO-India					Target 330 Mpc
2015	2016	2017 2018 2	019 2020 2	2021 2022 2023 2024	4 2025 2026

B. P. Abbott et al., Living Rev Relativ (2020) 23:3

B. P. Abbott et al., Living Rev Relativ (2020) 23:3

B. P. Abbott et al., Living Rev Relativ (2020) 23:3

Exciting Discoveries over the next 5 years

• Multi-messenger Astronomy

- In O4 (mid 2022) 35-44% of BNS/BBH events are estimated to have a localisation within 20 deg²

- EM-GW-Neutrinos?
- Observing NS-BH systems
- Understand the population of stellar-mass compact binary mergers

- BBH mass spectrum - do we see features consistent with pair instability supernovae?

- BBH formation channels - can we distinguish between systems formed in the field and through dynamical interactions?

- Merger rate with redshift - does it follow the SFR?

• Detection of gravitational waves with pulsars?

Image credit: Karan Jani/Georgia Tech

Image Credit: David Champion, Max Planck Institute for Radio Astronomy

10+ years: 3G Detectors

Einstein Telescope (ET)

- European based
- Order of magnitude increase in sensitivity over Advanced LIGO
- Sensitivity: 1Hz tens of kHz
- 10km arms in a triangle configuration
- Objectives: explore black hole seeds, test gravity with black holes, cosmography, nuclear physics...

http://www.et-gw.eu/

Detection horizon for black-hole binaries

10+ years: LISA

- Sensitive to the region 10⁻⁴ to 10⁻¹ Hz
- Low frequency -> go after the first seed black holes, exploring z ~ 20
- LISA pathfinder demonstrated key technologies
- 2.5 million km arms
- Launch expected 2034
- Black hole systems with masses from few M_{\odot} to $10^8~M_{\odot}$
- Observe GW150914-like events over many years to < 1 deg² and the time of coalescence for ground-based detectors to within a minute!
- Localise 10⁶ 10⁷ M_{\odot} binary black holes at z~2 to ~ 100 deg² at least one day prior to merger

Amaro-Seoane et al., arXiv:1702.00786 (2017)

Questions?