FASERLiverpool October Update

Sinead Eley

Neutral Hadrons: Recap

- Neutral hadrons produced from muon decay in rock before FASER
- Expected to be negligible due to low probability of neutral hadrons surviving until Veto scintillators
- Using purpose made samples for neutral hadrons produced by Eli
 - Mu + (980 fb-1) & Mu (945 fb-1)
- Method:
 - Select neutral hadrons using their PID_
 - Apply baseline cuts
 - If there are events that pass all selections, use results to scale neutral hadron PG samples to find yield of a specific species

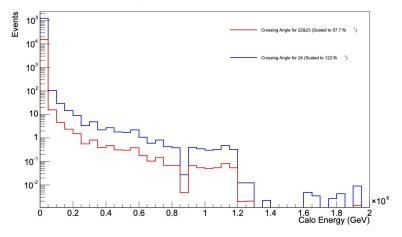
Particle	PID
K_L	130
K_S	310
Neutrons (anti-neutrons)	2112 (-2112)
$\Lambda_0 \; (ar{\Lambda_0})$	3122 (-3122)

MC Cuts
Calo E $> 20 \text{ GeV}$
Timing Signal $< 20 \text{ pC}$
VetoNu Signal < 40 pC
Veto Signal < 40 pC

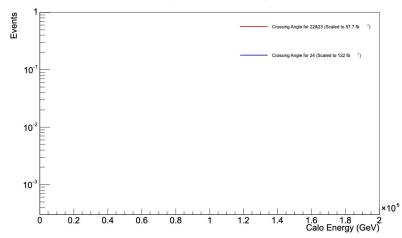
Muons in 2024 Data

- Due to change in LHC optics in 2024, FASER saw an increase in muon flux (of a factor 2)
- As neutral hadrons are secondaries of the muons incident on the rock before FASER
 - Necessary to apply an extra weighting to neutral hadron samples to calculate the background in 2024 data
- Weighting calculated using muon flux in data
 - Apply to sample at the same time as FLUKA weights

Neutral Hadrons

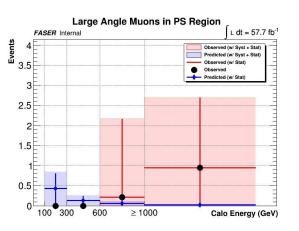

2022/23 Neutral Hadron Background

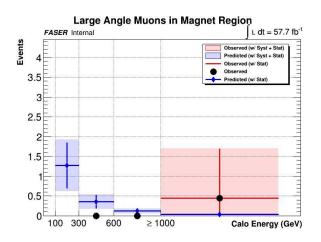
All Regions [Not leadShield]		
Cut	Input	Pass
Select Neutral Hadrons	872486.96	15277.58
Calo Energy > 20 GeV	15277.58	80.65
Timing < 20 pC	80.65	0
VetoNu < 40 pC	0	0
Veto < 40 pC	0	0

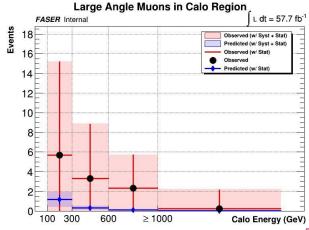

2024 Neutral Hadron Background

All Regions [Not leadShield]		
Cut	Input	Pass
Select Neutral Hadrons	1938564	126093.58
Calo Energy > 20 GeV	126093.58	530.17
Timing < 20 pC	530.17	0
VetoNu < 40 pC	0	0
Veto < 40 pC	0	0

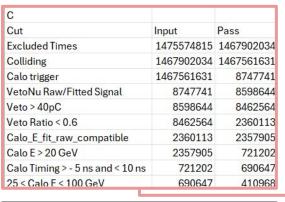
Neutral Hadron Background (From both μ^{-} and μ^{-}) - Before Baseline Cuts

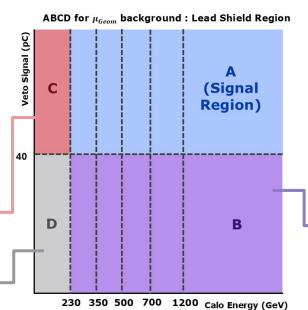



Neutral Hadron Background (From both μ and μ) - After Baseline Cuts



ALPtrino - Geometric Muon Estimates (22 & 23 Data)


- Observed and predicted events agree within errors
- Geom. Muons in lead shield to be estimated
- Largest estimate in calo region prediction falls off massively after 1st bin



Lead Shield ABCD Data Cutflows per ABCD region

D		111
Cut	Input	Pass
Excluded Times	1475574815	1467902034
Colliding	1467902034	1467561631
Calo trigger	1467561631	8747741
VetoNu Raw/Fitted Signal	8747741	8598644
No Veto Signal	8598644	17218
Veto Ratio < 0.6	17218	10670
Calo_E_fit_raw_compatible	10670	10656
Calo E > 20 GeV	10656	1084
Calo Timing > - 5 ns and < 10 ns	1084	1053
25 < Calo E < 100 GeV	1053	571

PROBLEM!

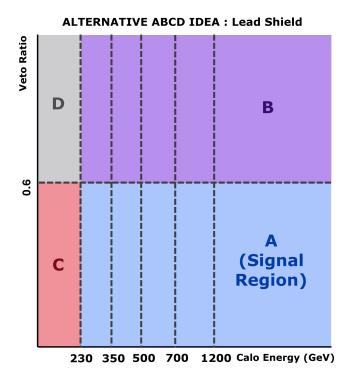
- Unlike other regions:
 - Veto > 40 pC
 - No timing cut
 - Veto Ratio < 0.6 (Veto Ratio = Veto St 0/ Veto St 1)
- Inverting veto nu cut and applying ABCD method in diagram
 - Resulted in no stats :(

В		
Cut	Input	Pass
Excluded Times	1475574815	1467902034
Colliding	1467902034	1467561631
Calo trigger	1467561631	8747741
VetoNu Raw/Fitted Signal	8747741	8598644
No Veto Signal	8598644	17218
Veto Ratio < 0.6	17218	10670
Calo_E_fit_raw_compatible	10670	10656
Calo E > 20 GeV	10656	1084
Calo Timing > - 5 ns and < 10 ns	1084	1053
Calo E > 100 GeV	1053	0

Alternative Approach?

- Rather than construct ABCD method using veto signal
 - Use veto signal instead
- Super high prediction....?

	MC	Data	Data-MC
B1 (100-300 GeV)	485	203806	203321
B2 (300-600 GeV)	82	52421	52339
B3 (600-1000 GeV)	12	17159	17147
B4 (> 1000 GeV)	4	4906	4902
С	179	410968	410968
D	2049	977143	977143
A1			85655.36
A2			22049.45
A3			7223.713
A4			2065.122


Cuts Applied
Calo E > 20 GeV

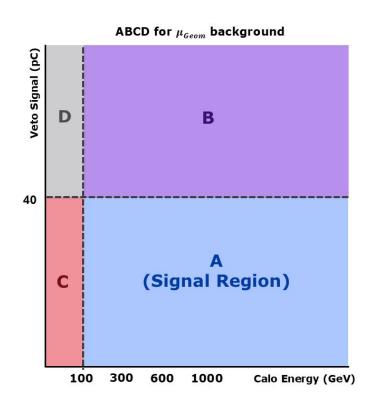
VetoNu Raw/Fitted Signal

Veto > 40pC

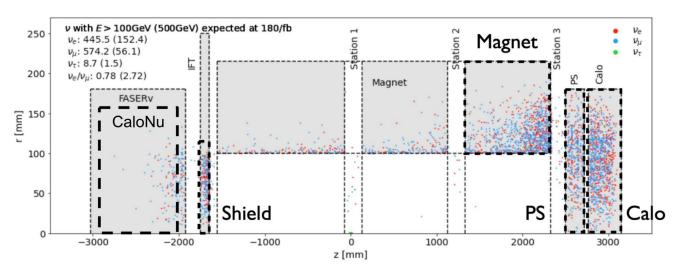
Veto Ratio >= 0.6

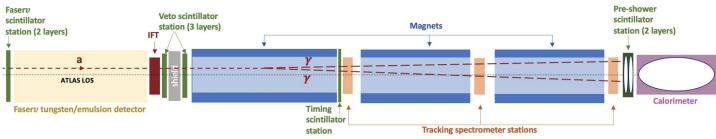
	MC	Data	Data-MC
SR1 (100-300GeV)	2040	28	-2012
SR2 (300-600GeV)	662	3	-659
SR3 (600-1000GeV	200		-200
SR4 (>1000 GeV)	68		-68

Summary / Next Steps


- Now have predictions for the 22/23 geometric muon background in most regions
- Get prediction for geometric muons in lead shield region
- Continue writing alptrino int note
- Reevaluate preshower fudge factor for MC24
 - Requires large FLUKA samples in MC24 to evaluate photon conversions in both data and MC

Back Up


ABCD Method for Geometric Muons


- Calorimeter, Magnet and Preshower regions

$$N_i^{\mu_{ ext{Geometric}}} pprox \left(B_i^{ ext{Data}} - B_i^{ ext{MC}}
ight) rac{C^{ ext{Data}} - C^{ ext{MC}}}{D^{ ext{Data}} - D^{ ext{MC}}} f$$

Regions

