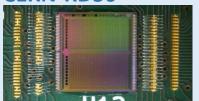

DRD3 Community Shared Submission in LF15A Technology

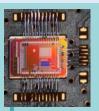
Eva Vilella, University of Liverpool

■ For more details, please see presentation during last DRD3 Collaboration Week (<u>here</u>).

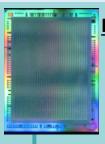
Full mask-set run



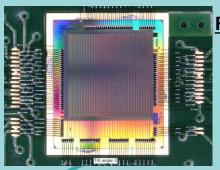
- Submission in Q2 2026
- PO being rised through **CERN**


Liverpool LFoundry HV-CMOS R&D

CERN-RD50


RD50-MPW1

- 50 μm x 50 μm pixels
- Digital RO in sensing diode
- Topside HV biasing
- $V_{BD} = 56 \text{ V, large } I_{LEAK}$


RD50-MPW2

AIDAinnova

RD50-MPW3

- 62 μm x 62 μm pixels
- 64 x 64 pixels matrix
- Digital RO in sensing diode
- Digital periphery
- In-pixel high-noise due to power & grounding issue
- Topside HV biasing
- $V_{RD} = 120 \text{ V, small } I_{LEAK}$

RD50-MPW4

- 62 μm x 62 μm pixels
- 64 x 64 pixels matrix
- Digital RO in sensing diode
- Digital periphery
- In-pixel low-noise
- Improved chip rings
- **Backside HV biasing**
- $V_{RD} > 600 \text{ V, small } I_{LEAK}$

2017

2018

2019

2020

2021

2023

2024

60 μm x 60 μm pixels

Analogue RO only

Topside HV biasing

 $V_{BD} = 120 \text{ V, small } I_{LEAK}$

2022

Liverpool line

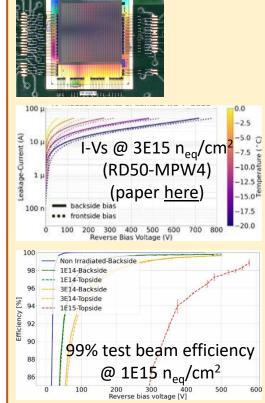
- Market survey completed in 2023 (nuclear, medical & space)
- Patents filed in the US and Europe
- Commercial flyer More in Stephen's talk

All chips thinned to 280 µm

- 60 μm x 60 μm pixels
- Analogue RO only
- Alternative sensor cross-section (w/o p-isolation between pixels) and **chip rings** (current terminating type)
- **Backside HV biasing**
- V_{BD} > 600 V (thermal runaway), large I_{IFAK}

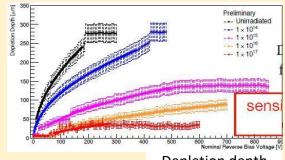
UKRI-MPW1

- 60 μm x 60 μm pixels
- Analogue RO only
- Improved alternative sensor cross-section (w/p-shield style isolation between pixels) and chip rings (as in RD50-MPW4)
- **Backside HV biasing**
- $V_{BD} > 600 \text{ V, small } I_{LEAK}$


RadPix

- Being designed
- DRD3/LHCb UG2

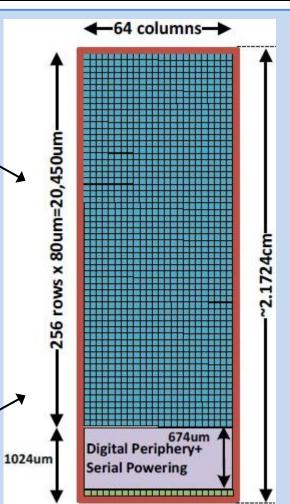
RadPix


RadPix

Previous R&D

RD50-MPW4

- 62 μm x 62 μm pixels
- 64 x 64 pixels matrix
- Digital RO in sensing diode
- In-pixel low-noise
- Large digital periphery
- Large power consumption
- Improved (wide) chip rings
- V_{BD} > 600 V, small I_{LEAK}
- Backside HV biasing
- 280 μm thickness
- 2 kΩ·cm HR substrate

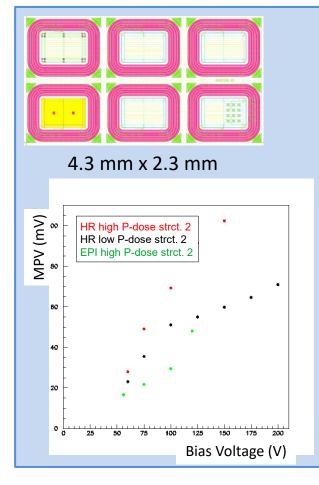


LF-MonoPix2

Depletion depth $\leq 1E17 \text{ n}_{eq}/\text{cm}^2$

- 150 μm x 50 μm pixel (UKRI-MPW1=RD50-
- 340 x 56 pixels matrix MPW4's brother)
- Digital RO in sensing diode
- Large sensor capacitance (noise)

Design team: S. Benhammadi^a, R. Casanova^b, Y. Degerli^c, H. Elnashari^d, N. Guerrini^a, T. Gao^e, F. Guilloux^c, K. Hennessy^f, S. Powell^f, E. Vilella^f, C. Zhang^f STFC TD^a, UAB^b, IRFU-CEA^c, Uni. Glasgow^d, Uni. Cambridge^e, Uni. Liverpool^f


RadPix1

- 80 μm x 80 μm pixels
- 256 x 64 pixels matrix
- Digital RO in sensing diode
- In-pixel low-noise
- Optimised digital periphery
- 1.28 Gb/s serial link
- Serial powering
- 150 mW/cm² power consumption
- Optimised (narrow) chip rings
- Large V_{BD}, small I_{LEAK}
- Backside HV biasing
- 100-200 μm thickness
- 5E15 n_{eg}/cm² target

- I-V curves
- Pixel matrix with test pulses and radioactive sources
- Chip periphery
- Serial powering with >1 chip
- Irradiation studies and test beam evaluation

GL-GR

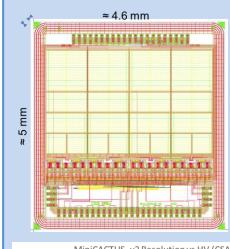
Design team: Yavuz Degerli^a, Fabrice Guilloux^a, Raimon Casanova^b, Pablo Fernandez^c, Juan Ignacio Drovandi^c, Archie Hanlon^d, Eva Vilella^d IRFU^a, IFAE^b, IMB-CNM^c, Uni. Liverpool^d

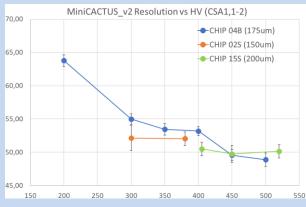
GL GR

- Improved Gain Layer test structures
- Need two customer reserved layers for gain layer implementation
- 6 diodes, each split in half diode
- Precision timing

Evaluation plans

- In lab: 90-Sr and IR laser
- IV
- Measurements of amplitude vs HV


See two DRD3 presentations:


- "Testbeam results of the MiniCactus V2 timing demonstrator", J. Pinol
- "Development of sensors with intrinsic gain in LFoundry 150 nm technology", P.
 Schwemling

Interested chips

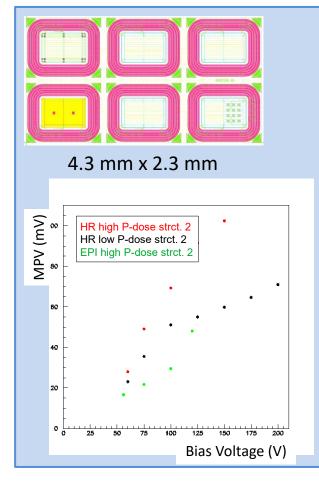
GL-MiniCactusV2

Design team: Yavuz Degerli^a, Fabrice Guilloux^a, Raimon Casanova^b IRFU^a, IFAE^b

GL-MiniCactusV2

- Study of diodes with intrinsic amplification and integrated FE
- 4.6 mm x 5 mm chip
- Integrated slow control
- Programmable FE
- Two customer-layers needed for gain layer
- Special passivation also needed (use of MT layer)
- Two columns of pixels, organised in half columns
- Precision timing (< 50 ps)

Evaluation plans


- In lab: 90-Sr and IR laser
- Test beam
- Signal amplitude and time resolution measurements

See two next presentations:

- "Testbeam results of the MiniCactus V2 timing demonstrator", J. Pinol
- "Development of sensors with intrinsic gain in LFoundry 150 nm technology", P.
 Schwemling

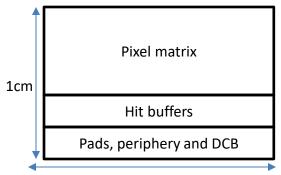
GL-GR

Design team: Yavuz Degerli^a, Fabrice Guilloux^a, Raimon Casanova^b, Pablo Fernandez^c, Juan Ignacio Drovandi^c, Archie Hanlon^d, Eva Vilella^d IRFU^a, IFAE^b, IMB-CNM^c, Uni. Liverpool^d

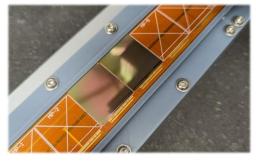
GL GR

- Improved Gain Layer test structures
- Need two customer reserved layers for gain layer implementation
- · 6 diodes, each split in half diode
- Precision timing

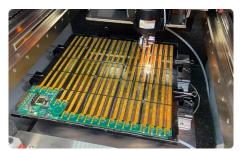
Evaluation plans


- In lab: 90-Sr and IR laser
- IV
- Measurements of amplitude vs HV

See two next presentations:


- "Testbeam results of the MiniCactus V2 timing demonstrator", J. Pinol
- "Development of sensors with intrinsic gain in LFoundry 150 nm technology", P.
 Schwemling

HV-Pix26


Design team: Nicolas Striebig, Alexander Elsenhans, Christian Krämer, Richard Leys, Ilona Münnich, Miaoran Sun, Yue Su, Bowen Xu, Ivan Peric (KIT, Karlsruhe, Germany)

HVCMOS Sensor MuPix for Mu3e

HVCMOS Sensor AstroPix for Compton telescope

Motivation:

HV-CMOS sensors are being developed for use in several cutting-edge applications, including particle physics experiments, a planned Compton telescope, and ion beam therapy.

The **LFoundry** technology provides several key advantages:

Use of substrates with resistivity > 2 k Ω , capability for full substrate depletion, integration of CMOS electronics within a deep n-well, availability of a deep p-well.

These features enable high performance and flexibility, making the technology well-suited for a range of demanding detector applications

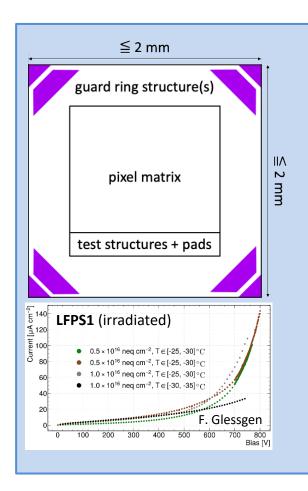
Specifications:

- Low-power operation
- Fully depleted thick substrate essential for Compton telescope applications
- Daisy-chain readout, serial powering, module compatibility

Chip components:

• Pixel matrix, digital hit buffers, digital control block (DC B)

Applications:


• Use in particle physics experiments, gamma space telescope, beam monitoring for ion therapy

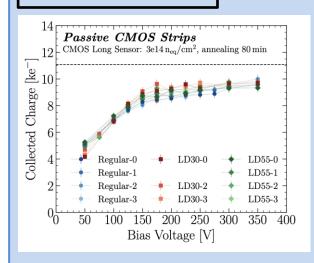
Evaluation plans:

Performance will be characterised through laboratory measurements and test beam studies, including
activities within the DRD project: "HV-CMOS Pixel Detector Demonstrator with Serial Powering."

LFPS2

Design team: M. Franks, B. Ristic, M. Backhaus ETH Zurich

LFPS2

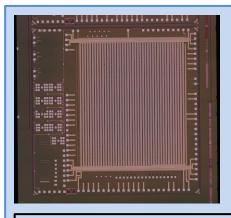

- Motivation: Exploration of CMOS chips with AC-coupled pixels as passive sensors in hybrids
- **Specifications:** Minimum 2 mm × 2 mm area (flexible), 1 or more substrate resistivities
- Description: Passive sensor with AC-coupled pixels, compatible with
 28 nm readout chips for hybridisation
- Research goals: Evaluate alternate hybridisation methods, demonstrate a radiation tolerance suitable for CMS L2 after LS4, or FCC-ee

- I-V measurements
- Hybridisation
- ROC + sensor characterisation
- Irradiation campaign
- Test beams

Monstera1

Design team: Ivan Peric, KIT, NN, Bonn

Depending on availability 5mm x 10 mm would be nice


Monstera1

- MONolithic STrip Extended Readout Architecture
- Existing (passive) CMOS strip sensors extensively studied, results well published (e.g. NIM A 1061 (2024) 169132, NIM A 1064 (2024) 169407)
- Up to 60 strips with 75 μm width based on an existing CMOS strips design
- Each strip will have a front-end directly implemented making this an "active strips sensor"
- Front-end design will be based on the Telepix2 design with implemented amplifier and comparator.

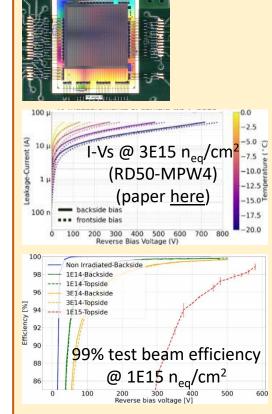
- Testing in the lab with the usual techniques (incl. source measurements)
- Test beam studies

Panther2 + TS

Design team: A. Ebrahimi^a, A. Ghimouz^a, H. Kästli^a, B. Meier^a, E. Monteil^a, T. Rohe^a, P. Sander^b
PSI^a, ETHZ^a

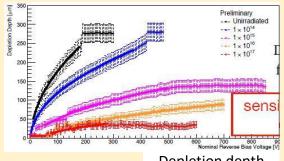
Previous R&D - Panther1

- First prototype submitted 2024
- Currently under test
- Panther2 will be similar in size, improved sensor/front-end performance


Panther2

- DMAPS with time of arrival measurement
- σ(t)<1ns
- PSI experiments
- Low rate, low radiation
- Test structures
 - GRs
- Edge TCT

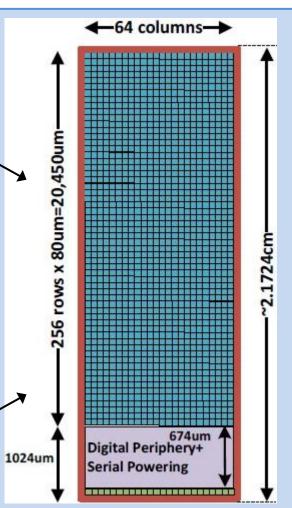
- Characterization with newly commissioned DAQ system in lab and test beam
- Measurement of $\sigma(t)$ versus
- Frontend flavour (3)
- Chip settings
- Position of track


RadPix

Previous R&D

RD50-MPW4

- 62 μm x 62 μm pixels
- 64 x 64 pixels matrix
- Digital RO in sensing diode
- In-pixel low-noise
- Large digital periphery
- Large power consumption
- Improved (wide) chip rings
- V_{BD} > 600 V, small I_{LEAK}
- Backside HV biasing
- 280 μm thickness
- 2 kΩ·cm HR substrate



LF-MonoPix2

Depletion depth ≤ 1E17 n_{eq}/cm²

- 150 μm x 50 μm pixel (UKRI-MPW1=RD50-
- 340 x 56 pixels matrix MPW4's brother)
- Digital RO in sensing diode
- Large sensor capacitance (noise)

Design team: S. Benhammadi^a, R. Casanova^b, Y. Degerli^c, H. Elnashari^d, N. Guerrini^a, T. Gao^e, F. Guilloux^c, K. Hennessy^f, S. Powell^f, E. Vilella^f, C. Zhang^f STFC TD^a, UAB^b, IRFU-CEA^c, Uni. Glasgow^d, Uni. Cambridge^e, Uni. Liverpool^f

RadPix1

- 80 μm x 80 μm pixels
- 256 x 64 pixels matrix
- Digital RO in sensing diode
- In-pixel low-noise
- Optimised digital periphery
- 1.28 Gb/s serial link
- Serial powering
- 150 mW/cm² power consumption
- Optimised (narrow) chip rings
- Large V_{BD}, small I_{LEAK}
- Backside HV biasing
- 100-200 μm thickness
- 5E15 n_{eq}/cm² target

- I-V curves
- Pixel matrix with test pulses and radioactive sources
- Chip periphery
- Serial powering with >1 chip
- Irradiation studies and test beam evaluation

Summary

- We are organising a DRD3 community shared submission in the 150 nm High Voltage CMOS process (LF15A) from LFoundry.
- This joint submission will include several chips designed by the DRD3 community.
- We are discussing with LFoundry the submission details, including the submission area.
- The chip design work is currently ongoing and the tape-out is tentatively planned for spring 2026.