

An Oscillation Analysis of the latest $\nu/\overline{\nu}$ T2K Dataset

Presented by Jaiden Parlone Supervised by: Prof. Costas Andreopoulos & Prof. Neil McCauley

+

Jaiden Parlone

Francis Bench

VALOR-T2K arises from the 3 analyser eigenstates

T2K (Tokai to Kamioka) is a long-baseline neutrino experiment that utilises multiple detectors in the goal of measuring the properties of neutrinos and their oscillations.

- Off-axis water-based Cerenkov far detector.
- Topology based PID.

event.

• CCQE dominant interactions.

Cerenkov rings detected at SK. (a) is a muon event, (b) is an electron

- Magnetised composite near detector.
- Off-axis (replicates SK energy spectra).
- Constrains flux and crosssection uncertainties.

- 'Off axis' beam tuned to 0.6 GeV for oscillation max at SK.
- Produces pure v_{μ}/\bar{v}_{μ} flux.
- Able to be run in ν or $\bar{\nu}$ mode.

We look to constrain the neutrino oscillation parameters;

- θ₂₃
- $\Delta m_{32}^2 (|\Delta m_{31}^2|)$
- θ₁₃
- δ_{CP} , the CP violating phase factor.

We achieve this through analysis of the $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance and $\nu_{e}/\bar{\nu}_{e}$ appearance channels.

Oscillation analysis requires inputs from many parts of the overall model.

- To achieve results, our Monte-Carlo model predictions are compared to our observed data.
- Our model is split into 5 samples, seen on the right.
- The latest T2K dataset (Run 1-10) was obtained with a total exposure of $1.99(1.65) \times 10^{21}$ Protons on Target in $\nu(\overline{\nu})$ mode.
- 94 1-Ring v_e events were observed.
- Currently e-like events are binned in 2D, E-θ, and μ-like in 1D, E.
- E. θ (lepton angle) dimensionality provides increased $\nu/\overline{\nu}$ separation (among other benefits).

Additional binning studies

Adding a courser $\boldsymbol{\theta}$ kinematic binning:

- Gives greater constraint on Δm_{32}^2 (and minorly θ_{23}).
- Greater CC $v_{\mu} + \bar{v}_{\mu}$ from NC separation, and ad-hoc parameter constraint.

CPU time per job

12

14

10

16

18

• Balance needed against CPU time.

100 F

80

60

40

20

No. of Jobs

Speaking of constraints...

These are official results that mirror those released at Neutrino 2020, and are from our T2K internal tech note.

- Binned log-likelihood method compares predicted and observed event spectra over parameter space.
- Systematics (and nuisance oscillation parameters) are marginalised over using their prior constraints.
- This leaves us with a likelihood dependent only on parameters of interest.
- Confidence intervals are constructed using const. ΔX^2 (left) or Feldman-Cousins (right).

Analysis next steps:

- Re-analysing the data with model/method updates.
- Analysis of the Run1-11 data, being taken (roughly) now!

Future of LBL in Japan:

- Upgraded beam power to 750 kW (2022) & 1.3MW (2029). This means more data with each run!
- Near Detector Suite Upgrade with many additional reconstruction benefits.
- The Hyper-Kamiokande experiment (a separate branch of VALOR).

Acknowledgements: My comrades in code on the VALOR-T2K fitting framework, Francis Bench and Maria Antonova, as well as my co-collaborators in the OA group and beyond.

Merry April!

For sensitivity studies (among other purposes) a fake 'Asimov' dataset is generated using different values:

Predicted Oscillation Hypothesis				Observed
No osc.	Asimov A	Asimov B	Asimov BF NO	Observed
1571.4	345.5	361.8	354.0	318
19.6	93.8	69.8	95.2	94
444.5	135.1	138.8	137.9	137
6.3	15.9	16.4	16.9	16
2.9	8.8	6.8	8.9	14
	No osc. 1571.4 19.6 444.5 6.3 2.9	Predicted No osc. Asimov A 1571.4 345.5 19.6 93.8 444.5 135.1 6.3 15.9 2.9 8.8	Predicted Oscillation I No osc. Asimov A Asimov B 1571.4 345.5 361.8 19.6 93.8 69.8 444.5 135.1 138.8 6.3 15.9 16.4 2.9 8.8 6.8	No osc. Asimov A Asimov B Asimov BF NO 1571.4 345.5 361.8 354.0 19.6 93.8 69.8 95.2 444.5 135.1 138.8 137.9 6.3 15.9 16.4 16.9 2.9 8.8 6.8 8.9

- So that oscillation parameters can be constrained with accuracy, uncertainties need to be understood.
- The Near-Detector provides the Oscillation Analysis with a correlated flux and cross-section model & respective error covariance matrix.
- The Far Detector provides the Oscillation Analysis with a detector error constraint from atmospheric data, and more complex interaction systematics (Secondary interactions and Photonuclear effect).

	Parameter(s)	Prior PDF	Range
	$\sin^2 \theta_{23}$	Uniform	[0.3, 0.7]
	$\sin^2 \theta_{13}$ T2K-only	Uniform	[0, 0.4]
	$\sin^2 2\theta_{13}$ reactors	Gaussian	0.0853 ± 0.0027
	$\sin^2 2\theta_{12}$	Gaussian	0.851 ± 0.020
	Δm^2_{32} (NO) / $ \Delta m^2_{31} $ (IO)	Uniform	$[2.3, 2.8] \times 10^{-3} \ {\rm eV^2/c^4}$
	Δm_{21}^2	Gaussian	$(7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2/\text{c}^4$
	δ_{CP}	Uniform	$[-\pi,+\pi]$
	Mass Ordering	Fixed	NO or IO
Parameter	r(s) of interest	Number of Po	ints Range
$\sin^2 \theta_{23}$		101	[0.3, 0.7]
$\sin^2 \theta_{13} T_{2}$	2K-only	101	[0.007, 0.053]
$ \Delta m_{32}^2 $ (N	NO) / $ \Delta m_{31}^2 $ (IO)	101	$[2.2, 2.8] \times 10^{-3} \text{ eV}^2/\text{c}^4$
δ_{CP}		101	$[-\pi,\pi]$
$\sin^2 \theta_{23}, 2$	$\Delta m_{32}^2 $ (NO) / $ \Delta m_{31}^2 $ (IO)	81×51	$[0.3, 0.7], [2.2, 2.8] \times 10^{-3} \text{ eV}^2/\text{c}^4$
$\sin^2 \theta_{13}, \delta_0$	$_{CP}$ T2K-only	81×51	$[0.007, 0.053], [-\pi, \pi]$
$\sin^2 \theta_{13}, \delta_{CP} \mathrm{T2K+reactor}$		81×51	$[0.015, 0.036], [-\pi, \pi]$
$\sin^{-}\theta_{13}, \theta_{0}$	<i>CP</i> 12 K +reactor	91 X 91	$[0.015, 0.030], [-\pi, \pi]$

Prior distributions that nuisance oscillation parameters are marginalised over.

Number of points across parameter(s) of interest space where a likelihood is constructed.

