SEARCH FOR HIGGS INVISIBLE AND DARK MATTER MONO-Z SIGNATURE WITH $Z(\mathcal{E}\mathcal{E})$ +MET FINAL STATE

Eloisa Arena

Andrew Mehta, Monica D'Onofrio, Matthew Sullivan Sarah Heim (DESY)

- ► The Higgs boson, in the Standard Model, can decay to insivible through $H \rightarrow ZZ^* \rightarrow vvvv$. The theoretical SM prediction is $BR_{H \rightarrow inv} = 1.06 \times 10^{-3}$ for $m_H = 125$ GeV.
- > The final state targeted is $\ell \ell + E_T^{miss}$, given by the ZH production mode, with the Z decaying into two leptons;
- ▶ Previous results with 2015-2016 data (36.1 fb-1) for the ZH: $BR_{H\rightarrow inv} < 39\%$.

II+MET ANALYSIS

- The $\ell \ell + E_T^{miss}$ final state potentially can be produced also by Beyond Standard Model physics processes. Among these, there are:
 - The Higgs-portal models predict a larger $BR_{H\rightarrow inv}$ in which the Higgs could decay into two Dark Matter (DM) particles.
 - If dark matter gets its mass from the Higgs boson and this is lower than about 10 GeV, $H \rightarrow invisible$ is the most likely place for a discovery.
 - axial-vector/vector simplified model;

II+MET ANALYSIS

The signal is represented by two isolated leptons from a Z boson decay and large missing transverse momentum due to an invisible Higgs boson decay or a WIMP pair $(\ell \ell + E_T^{miss})$, with $\ell = e, \mu$.

Selection:

$$- E_T^{miss} > 90 GeV; \quad - \Delta R(\ell \ell) < 1.8; - E_T^{miss} Sig > 9; \quad - b - jets \text{ veto};$$

Background	Data-driven method	Contribution	
	4ℓ and $Z\gamma$ control region	44%	
WZ	3ℓ control region	26%	
Z+jets	Sideband method	14%	
Non-resonant $\ell^+\ell$	$ e\mu$ control region	15%	
W+jets		< 1%	
$t\bar{t}V, t\bar{t}VV, VVV$		< 1%	

► BDT discriminant is used, built using kinematic variables such as E_T^{miss} Significance, angular distance between leptons, etc.. as input.

$ZZ(\ell \ell) + MET BACKGROUND$

- The main backgrounds are estimated with the aid of data in control regions.
- > The SM ZZ production is the dominant background in $Z(\ell \ell) + MET$ analysis;
 - \blacktriangleright a 4 ℓ CR is used to constrain the predictions from Monte Carlo.
 - Two dilepton pairs coming from the decay of two Z bosons.
 - ► Treat one dilepton pair as invisible to mimic $ZZ \rightarrow \ell \ell \nu \nu$.

HEP Meeting

ZZ production

$ZZ - 4\ell CR$

- Four leptons selected, with looser p_T requirement to increase the statistics, veto on 5th lepton.
- Pairing done using the following algorithm when the four leptons are all of the same flavour.

case 1:
$$Z \rightarrow \ell_1^+ \ell_2^-, Z \rightarrow \ell_3^+ \ell_4^-$$

case 2: $Z \rightarrow \ell_1^+ \ell_4^-, Z \rightarrow \ell_3^+ \ell_2^-$

$$\min \begin{cases} |m_{\ell_1^+ \ell_2^-} - m_Z| + |m_{\ell_3^+ \ell_4^-} - m_Z| \\ |m_{\ell_1^+ \ell_4^-} - m_Z| + |m_{\ell_3^+ \ell_2^-} - m_Z| \end{cases}$$

Once the pairing is performed, the lepton pair to be treated as invisible is determined thourgh a 50-50 random choice.

Channel	Data	MC Total	$qq \to \ell^+ \ell^- \ell^{'+} \ell^{'-}$	$gg \rightarrow \ell^+ \ell^- \ell^{'+} \ell^{'-}$	$qq \rightarrow \ell^+ \ell^- \ell^{'+} \ell^{'-} jj$	VVV
ee	132 ± 11	125.03 ± 1.14	115.82 ± 1.14	8.09 ± 0.06	0.91 ± 0.03	0.201 ± 0.006
$\mu\mu$	182 ± 13	147.22 ± 1.19	136.72 ± 1.19	9.27 ± 0.07	0.99 ± 0.04	0.227 ± 0.006

SIMULTANEOUS FIT ZH(inv)

- ► Use a simultaneous fit to set limits on mono-Z and $H \rightarrow inv$. branching ratio.
- ➤ Control regions (4ℓCR, 3ℓCR and eµCR) used to contraint the various backgrounds in the Signal Region.
- ► Fitted $ee + \mu\mu$ together.
- ► Improved the past BR limit by a factor of 2.
- ► Improved sensitivity for 2HDM and simplified models.

QUALIFICATION TASK

- ► Work done in the Electron Identification (ID) group.
- Maintened and improved sofware used to produce the idenfitication working point.
- Studies performed to estimate the impact of using different variables to derive the ID working points under different configuration of the ATLAS detector.
- Important to have a solid workflow to derive the working point for the Run 3 data taking.
- Keep contributing to the elctron ID effort.

This year:

- ► I have studied a method to improve the estimate of $ZZ \rightarrow \ell \ell \nu \nu$ background using the $ZZ \rightarrow 4\ell$ channel;
- ► Based at DESY, I will (hopefully) be back in Liverpool in September;
- Became an ATLAS author, having done my Qualification Task on electron ID;

Plans:

► Keep working on the analysis, to be published soon.

Thank you for the attention!