A silicon based polarimeter for pEDM searches

James Gooding

E. Vilella-Figueras, G. Casse, N. Rompotis

HEP Annual Meeting 2021

Contents of presentation

- Brief Overview
- Simulation
- Experimental

Overview of proton EDM

An EDM is caused by separation of permanent charges inside a particle

The standard model predicts proton EDM's at the level of 10⁻³¹ e.cm

Some BSM predict nucleon EDM's in the range 10⁻²⁴ - 10⁻²⁸ e.cm range

Sensitivity target ~ 10⁻²⁹ e.cm

JePo incompatibility

Material budget at lower energies
Forward angle detector

CW

800µm Steel Beam Window

Angular acceptance 4 – 15 degrees

Simulation

Potential LGAD time resolution 30-50 ps What length chamber makes this suitable for this experiment?

Pellet target feasibility study

Result:

- Pellet target can achieve 2cm offset from main beam whilst retaining stable circulation (100 keV loss in target)

Simulations by Maximilian Vitz

LGAD Time of Flight telescope

- Remote adjustability to below 100µm accuracy
- Beamline planned with medical proton therapy facility
- ToF distance range 100-900 mm

V.2. Carriages

- Mechanical structure completed
- Awaiting readout systems and PCB manufacture
- Motor control
- <mark>GUI?</mark>
- Final assembly and wiring
- Test beam
- Data analysis and results

LGAD Time of Flight telescope

PCB's on order! PMT used as stand-in

Thank you for listening! Any Questions?

Backup Slides

HVCMOS - High Voltage CMOS

CMOS structure inserted in an isolated deep N-Well.

High resistivity wafers in a standard commercial process allow large depletion to be easily achieved at a low cost compared to other detector systems such as hybrid silicon.

- Small pixel sizes (50µm×50µm)
- Thin modules (>50µm)
- High radiation tolerance (E15 n_eq/cm^2)
- Time resolution (5ns)
- Power consumption (150 mW/cm^2)

- I. Peric et al (2007)

- MuPix7 simplified cross section

LGAD - Low Gain Avalanche Diodes

Standard n+ implant is typical for silicon diode detectors.

Heavily doped "P" avalanche/gain region producing a typical range of 10-100.

Very fast hit collection. Resolution in order of tens of ps.

UFSD2 LGAD

Sensors can be thinned < 300 μ m

http://scipp.ucsc.edu/~schumm/talks/atlas/LGAD/SCHUMM_CPAD-2018.pptx

1. The necessity of low material budget

Strong effect from the current 800 um beam window at lower energies. 2cm plastic scintillator also needed for precise position resolution (1mm). **Another approach will be needed for low energy.**

Configuration

A forward configuration will target only one area of figure of merit

- A cylindrical design surrounding the beamline and target will be effective in two areas of high figure of merit.
- Forward area figure of merit strongly influenced by rate, not analyzing power.

Phi measurement accuracy and efficiency

Theta accuracy and efficiency

1500um thick carbon targets (5mm radius, 15mm spacing)

600um thick carbon targets (5mm radius, 15mm spacing)

Split Target Investigations

1500um thick carbon targets (5mm radius, 15mm spacing)

Carbon (Diamond) 45MeV

→ ● _____1° acceptance

Beam defined as 1% larger diameter then pellet:

- 1.97% by definition passes pellet without interaction

LGAD Time of Flight telescope

- Readout

TRB3 & Padiwa boards for TDC and readout

https://iopscience.iop.org/article/10.1088/1748-0221/6/12/C12004/pdf

Extra information: http://jspc29.x-matter.uni-frankfurt.de/trb/publications/201310_NoMeTDC_Ugur.pdf

The third addition to Padiwa-family boards, optimized for direct connection to a MC-PMT - four of these 16 channel boards fit onto the 5x5 cm2 backside of a typical MC-PMT

