

Axion searches in rare Higgs decays at ATLAS

Adam Ruby , Cristiano Sebastiani Nikolaos Rompotis, Sergey Burdin

	7	00001111 10101011	10 100011	010 1010) () 1 (01010100101010 01011010010001
		0101	00110	01110	11	0101
		1010	101111	01010	110	1010
	1	0011	01010	11011	100	0110
		1001	01011	11101	11011	0101
		0101	0000	0101010	01010	1100
		0011	111001	01011010	010011	0110
		10101011	100011	0110	0011	0101
		0010100	000	0001	1000	1100

Signature

UNIVERSIT

0 F

Signature: 2 leptons + 2 collimated ۶ photons 2 leptons: electrons or muons to trigger $h \to Za \to \ell\ell, \gamma\gamma$ ALP may be long-lived, focus on prompt decays for now Main backgrounds Z+jets & Z+ γ 2 collimated photons \bar{q} Zv

ATLAS detector

ATLAS Public pages

- > The detector is made up of several large subsystems:
 - Inner detector (ID)
 - Electromagnetic (ECAL) and Hadronic calorimeters (HCAL)
 - Muon spectrometer

Photon Reconstruction & Identification

Photon Isolation & Identification (ID) criteria applied to reduce effects from background photons (e.g pile-up).

Isolation: cuts on transverse energy in a cone, ΔR .

ID: rectangular cuts on calorimetric variables for separation from fake signatures.

Loose ID: Middle layer + hadronic leakage variables.

Tight ID: + Strip layer variables.

 $E_{\rm T}^{\rm iso}|_{\Delta R < 0.2} < 0.065 \cdot E_{\rm T}$ $p_{\rm T}^{\rm iso}|_{\Delta R < 0.2} < 0.05 \cdot E_{\rm T};$

Loose Isolation criteria

Photon ID discriminating variables

Truth level

Event Categorisation

$$X = \Delta R_{\gamma\gamma} \frac{p_{T\gamma\gamma}}{2m_{\gamma\gamma}}$$

From kinematics, define variable X.

A common property of each signal sample for selection

Categorisation

Resolved Category: Events for which the <u>di-photon pair</u> with X closest to 1 satisfies 0.96 < X < 1.2. Both photons pT > 10 GeV and satisfying $\Delta R_{vv} < 1.5$

Merged Category: The event fails Resolved category and it includes <u>a photon</u> with pT > 20 GeV.

Isolation cuts and Photon ID are not used during categorisation but are included afterwards with all photons required to pass loose isolation cuts and Loose PID.

All signal BR=0.1

Merged Category

UNIVERSITY

0 F

axion-particle candidate reconstructed as one photon

Signal region: 110 GeV < m_{iiv} < 130 GeV,

Eratio used in sideband to fix normalisation of Z+jets & $Z\gamma$ backgrounds

Eratio: Ratio of largest and second largest energy deposit over sum of total.

Resolved category

Two reconstructed photons from $a \rightarrow yy$ decay.

Strategy Overview

- > Use m(llγγ) to define signal (SR) and sideband (SB) regions
- Fit the m(γγ) distribution to extract signal

But

- Cannot extrapolate from SB to SR because the kinematics are different
- Suffer from MC statistics
 - \rightarrow Try a data driven approach instead.

No background MC scale factors in plots

Conclusion

Axion searches in Higgs decay $h \rightarrow Za \rightarrow \ell \ell, \gamma \gamma$ at the ATLAS detector.

Merged signal photons is a challenge, especially at low axion mass, and requires splitting search into two categories; called Merged & Resolved.

 Work still on-going. Several options for improvements but right now prioritizing robustness.

Thank you

Back-up

Photon Selection

Photons must pass loose isolation cuts & Loose PID.

Efficiency x Acceptance

Resolved Low mass points: 0.3% – 5% High mass points: 28% - 43%

Merged Low mass points: 40% – 57% Low mass points: mA = 0.7 GeV, 1 GeV or 2 GeV

High mass points: mA = 4 GeV, 6 GeV, 9 GeV

Split categories so Resolved for high mass and Merged for low mass

Merged category: Photon ID Loose PID variables

Two photons reconstructed as one

Isolation already applied.

Main differences seen in variables $\boldsymbol{R}_{\eta} \; \boldsymbol{and} \; \boldsymbol{w}_{\eta 2}$

Signal has longer tail: explaining relative drop in efficiency.

UNIVERSITY OF LIVERPOOL

Resolved category: Photon ID Loose PID variables

77....

Resolved category: Signal Parameterization

Black points = Monte Carlo simulated signal for mA = 4 GeV

Double Sided Crystal Ball used to model signal mass point distributions that are not simulated (**red**) and interpolated using fits between simulated mass points (**blue**).

Photon Selection: Resolved Category

Photons must pass at least FCLoose isolation and Loose PID.

Low mass points: mA = 0.7 GeV, 1 GeV or 2 GeV

High mass points: mA = 4 GeV, 6 GeV, 9 GeV

Background efficiencies < 2%

Passes Loose ID (**blue bar**) for final selection

Photon Selection: Merged Category

For merged category, **Low mass points** passing Loose ID have efficiencies ranging 40-60%.

Photon Selection: Resolved Category, isolation

Isolation variable distributions of high mass points match real photons better than in low mass.

FCLoose includes a topocone20/pT cut < 0.065.

Low mass values peak higher than high mass points.

2 GeV affected the most, explaining why Isolation cut efficiency is lowest.

Figure 16: Resolved category signal leading photon distribution (line) comparison with photon from $Z\gamma$ (shaded) for calorimeter isolation topocone with ΔR cone 0.2 divided by photon p_T , for different signal mass points. No isolation cuts applied and photon $p_T > 10$ GeV. Photons are truth matched. All shapes normalised to same integral and the last bin includes also the histogram overflow.

Merged category: Truth Photon pT

Merged category: Truth Photon ΔR_{vv}

Merged category: Isolation discussion

Quantity approx equal to DR between the 2 photons from the axion

Isolation cone $\sim 0.1 - 0.2$

- it should be 1 GeV, 4 and 6 GeV similar

Isolation cone ~ 0.1 - 0.4- it should be 1, 6 similar, and 2, 4 similar

This is what we observe!

Photon ID variables

Strip Layer

Category	Description	Symbol	loose	tight
EM Strip layer	$w_{s3} = \sqrt{\frac{\sum E_i (i - i_{\max})^2}{\sum E_i}}$ Shower width in η for EM 1 st layer using three strip cells centered on the largest energy deposit. E_i is the energy of strip cell <i>i</i> and i_{\max} the cell ID value with the largest energy.	w_{s3}		~
	Similar to w_{s3} but for all cells in a window $n \times \phi = 20 \times 2$ in cell units.	w_{stot}		\checkmark
	$F_{side} = \frac{E(\pm 3) - E(\pm 1)}{E(\pm 1)}$ Lateral containment of the shower along the η direction. $E(\pm n)$ is the energy $\pm n$ strip cells around cell with largest energy.	F_{side}		~
	$\Delta E = \begin{bmatrix} E_{2^{nd}max}^{S1} - E_{min}^{S1} \end{bmatrix}$ The difference between the energy of the strip with the second largest energy, $E_{2^{nd}max}^{S1}$, and the energy in the strip cell with the lowest energy between the largest and second largest energy, E_{min}^{S1} . Equal to 0 when there is no second maxima.	ΔE		\checkmark
	$\Delta E = \frac{E_{1\rm st}^{S1} - E_{2\rm nd}^{S1}}{E_{1\rm st}^{S1} - E_{2\rm nd}^{S1}}$ Relative difference between energy strip cell with largest energy, $E_{1\rm st}^{S1}$, and strip cell with second largest energy, $E_{2\rm nd}^{S1}$. Equal to 1 when there is no second maxima.	E_{ratio}		~

Photon ID variables

Middle Layer

Category	Description	Symbol	loose	tight
EM Middle layer	$R_{\eta} = \frac{E_{3\times7}^{32}}{E_{7\times7}^{32}}$ The ratio of the sum $E_{3\times7}$ of the energies in the second layer cells of the EM calorimeter contained in a 3 × 7 rectangle in $eta \times phi$ space of cell unit 0.025 × 0.0245 to sum of energies $E_{7\times7}$ in a 7 × 7 cell rectangle, centered	R_{η}	~	\checkmark
	$w_{\eta 2} = \sqrt{\frac{\sum E_i \eta_i^2}{\sum E_i} - \left(\frac{\sum E_i \eta_i^2}{\sum E_i}\right)^2}$ E_i is the energy deposit and η_i the position of cell <i>i</i> . Shower lateral width in the EM middle layer, using all cells in a window $\eta \times \phi = 3 \times 5$ in cell units	$w_{\eta 2}$	~	~
	$R_{\eta} = \frac{E_{3\times3}^{S^2}}{E_{3\times7}^{S^2}}$ Like R_{η} but in ϕ direction. Behaves differently for unconverted and converted photons since for converted the electrons and positrons bend in ϕ when immersed within a magnetic field.	R_{ϕ}		V

Photon ID variables

Hadronic Leakage

Category	Description	Symbol	loose	tight
Acceptance	$ \eta < 2.37$ with $1.37 < \eta < 1.52$ excluded	-	\checkmark	\checkmark
Hadronic leakage	$\begin{aligned} R_{\rm had} &= \frac{E_{\rm T}^{\rm had}}{E_{\rm T}} \\ \text{The transverse energy } E_{\rm T}^{\rm had} \text{ deposited in the all} \\ \text{cells of hadronic calorimeter whose center is in a window} \\ \Delta\eta \times \Delta\phi &= 0.24 \times 0.24 \text{ behind the photon cluster,} \\ \text{ratio to the total transverse energy } E_{\rm T} \text{ of the photon candidate.} \\ \text{Used for } \eta \text{ region between } 0.8 \text{ and } 1.37 \end{aligned}$	\mathbf{R}_{had}	\checkmark	~
	$R_{\text{had1}} = \frac{E_{\text{T}}^{\text{had},1}}{E_{\text{T}}}$ The transverse energy $E_{\text{T}}^{\text{had},1}$ deposited in the cells of hadronic calorimeter first layer whose center is in a window $\Delta \eta \times \Delta \phi = 0.24 \times 0.24$ behind the photon cluster, ratio to the total transverse energy E_{T} of the photon candidate. Used for $ \eta $ region that R_{had} does not.	\mathbf{R}_{had1}	✓	~

