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What is pCT...

● Proton Computed Tomography
● Relatively old concept (~1960’s)
● Same concept as ‘usual’ x-ray 

scanning (xCT)
● Photons → Protons

Proton 
Source

www.startradiology.com
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...and why should we care?

● Proton Beam Therapy
● Protons deposit energy in a tight peak, unlike 

photons (x-rays)
● Relies on lining up the Bragg peek
● Calibration depends on material → RSP map

● Currently measured with x-ray CT
● But introduces an unavoidable minimum error
● pCT measures the RSP directly

www.provisionhealthcare.com
www.kindpng.com
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But what’s the catch?

● Protons scatter much more than 
photons

● Mostly small angle MCS
● Paths as straight lines → poor 

resolution
● But with modern computing, we 

can do track by track path 
estimation

www.kindpng.com
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Current methodology 

● MLP – ‘Most Likely Path’
● Most statistically precise 

prediction
● Based on MCS; uses cuts to 

reduce non MCS interactions

Recent work:
● Faster approximations
● Improved forms for 

Inhomogeneous media
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Monte Carlo

● 200MeV Protons
● Discarded partial tracks
● >800’000 tracks per dataset
● Recorded at 1mm intervals 

T Ackernley et al 2021 Phys. Med. Biol. 66 075015 
www.opengatecollaboration.org
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The ‘Proton Path Neural Network’
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Training:
● MSE loss
● ADAM optimiser
● Lr = 1e-5
● 1000 epochs

T Ackernley et al 2021 Phys. Med. Biol. 66 075015 

x199
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Root Mean Square Error 

T Ackernley et al 2021 Phys. Med. Biol. 66 075015 

PPNN      0.47 ± 0.01 sec
MLP        7.11 ± 0.08 sec



 9

Inhomogeneous Phantom

T Ackernley et al 2021 Phys. Med. Biol. 66 075015 
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Both methods 
trained/calibrated 
on water at 
230MeV.
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Summary

● Demonstrated a proof of concept proton trajectory prediction using a 
neural network based method

● Achieved a significant speed increase over MLP, and accuracy increase 
when data cut is neglected

● Similar behaviour on a sample 
inhomogeneous phantom

● Now published in Physics in Medicine & 
Biology



Backup Slides



 12



 17

Training 

● Pytorch
● MSE loss
● ADAM optimiser
● 1000 epochs
● Learning rate 1e-5
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Root Mean Square Error 

T Ackernley et al 2021 Phys. Med. Biol. 66 075015 
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Breakdown by angular change

T Ackernley et al 2021 Phys. Med. Biol. 66 075015 
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Maximum change
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Execution Time Trails

● Standard NC6 Microsoft Azure machine (CPU)
● 1,600,000 trajectories
● 10 times, unique batch combinations 

PPNN      0.47 ± 0.01 sec

MLP        7.11 ± 0.08 sec

~sixteen times faster
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Inhomogeneous Phantom

● 20mm Water
● 70mm Skull
● 20mm Cortical-bone
● 70mm Skull 
● 20mm Water

Increased stopping power 
→ 230MeV

● PPNN; trained on 230MeV 
water phantom

● MLP; ‘momentum velocity 
ratio’ recalculated using 
230MeV water phantom
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Inhomogeneous Phantom RMSE

T Ackernley et al 2021 Phys. Med. Biol. 66 075015 
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