

Machine Learning for Proton Computed Tomography

Thomas Ackernley

Supervisors: Prof Themis Bowcock, Dr Marco Cristoforetti, Dr Kurt Rinnert

INDUSTRY &

What is pCT...

- Proton Computed Tomography
- Relatively old concept (~1960's)
- Same concept as 'usual' x-ray scanning (xCT)
- Photons \rightarrow Protons

...and why should we care?

- Proton Beam Therapy
- Protons deposit energy in a tight peak, unlike photons (x-rays)
- Relies on lining up the Bragg peek
- Calibration depends on material \rightarrow RSP map
- Currently measured with x-ray CT
- But introduces an unavoidable minimum error
- pCT measures the RSP directly

3

But what's the catch?

- Protons scatter much more than photons
- Mostly small angle MCS
- Paths as straight lines \rightarrow poor resolution
- But with modern computing, we can do track by track path estimation

Current methodology

- MLP 'Most Likely Path'
- Most statistically precise prediction
- Based on MCS; uses cuts to reduce non MCS interactions

Recent work:

- Faster approximations
- Improved forms for Inhomogeneous media

Monte Carlo

z

- 200MeV Protons
- Discarded partial tracks
- >800'000 tracks per dataset
- Recorded at 1mm intervals

www.opengatecollaboration.org

T Ackernley et al 2021 Phys. Med. Biol. 66 075015

The 'Proton Path Neural Network'

• 1000 epochs

*(In later versions: $x_{in}, x_{out}, \theta_{in}, \theta_{out}$)

T Ackernley et al 2021 Phys. Med. Biol. 66 075015

Root Mean Square Error

Inhomogeneous Phantom

Both methods trained/calibrated on water at 230MeV.

10

Summary

- Demonstrated a proof of concept proton trajectory prediction using a neural network based method
- Achieved a significant speed increase over MLP, and accuracy increase when data cut is neglected
- Similar behaviour on a sample inhomogeneous phantom
- Now published in Physics in Medicine & Biology

Backup Slides

	1010101110	10101		01010100101010		
	0101	00110	0111	011	0101	
	1010	101111	0101	0110	1010	
	0011	01010	11011	1100	0110	
	1001	01011	11101	11011	0101	
	0101	0000	010101	001010	1100	
	0011	111001	0101101	0010011	0110	
	1010101110	00011	0110	0011	0101	
	00101000	00	0001	100	D 1100	

Training

- Pytorch
- MSE loss
- ADAM optimiser
- 1000 epochs
- Learning rate 1e-5

Root Mean Square Error

Breakdown by angular change

BRUNO KESSLEI

Maximum change

BRUNO KESSLEF

UNIVERSITY OF

FRP

Execution Time Trails

- Standard NC6 Microsoft Azure machine (CPU)
- 1,600,000 trajectories
- 10 times, unique batch combinations

PPNN 0.47 ± 0.01 sec MLP 7.11 ± 0.08 sec

~sixteen times faster

Inhomogeneous Phantom

- 20mm Water
- 70mm Skull
- 20mm Cortical-bone
- 70mm Skull
- 20mm Water

Increased stopping power \rightarrow 230MeV

- PPNN; trained on 230MeV water phantom
- MLP; 'momentum velocity ratio' recalculated using 230MeV water phantom

Inhomogeneous Phantom RMSE

