

Searches for Higgs boson pair production in the $b\overline{b}\tau^+\tau^-$ final state with 139 fb^{-1} of pp collision data with the ATLAS detector

Zhiyuan Jordan Li

University of Liverpool

Motivation

- Measuring the λ_{HHH} is a crucial test of electroweak symmetry breaking ٠ mechanism
- A direct probe of the λ_{HHH} is to measure the non-resonant di-Higgs • production via the "triangle diagram"
- However, the "box diagram" interferes with the "triangle diagram" • destructively, leading to a small cross section of 31.05 ± 1.90 fb (ggF)
- BSM scenarios can enhance the cross section too ٠

resonant production g2220000 Xh

Motivation

Observed Expected

15

21

26

120

170

305

10

 10^{4}

Obs

12.5

12.9

20.3

160

230

305

6.9

10³

95% CL upper limit on σ_{qqF} (pp \rightarrow HH) normalised to σ_{qqF}^{SM}

Expected $\pm 1\sigma$

Expected $\pm 2\sigma$

Exp. Exp. stat.

12

18

26

77

160

240

8.8

ATLAS

 $HH \rightarrow b\overline{b}\tau^{+}\tau^{-}$

 $HH \rightarrow b\overline{b}b\overline{b}$

 $HH \rightarrow b\overline{b}\gamma\gamma$

HH→ W⁺W⁻W⁺W

 $HH \rightarrow W^{+}W^{-}\gamma\gamma$

 $HH \rightarrow b\overline{b}W^+W^-$

Combined

10

 $\sqrt{s} = 13 \text{ TeV}, 27.5 - 36.1 \text{ fb}^{-1}$

 σ^{SM}_{qqF} (pp \rightarrow HH) = 33.5 fb

10²

$bb\tau\tau$ final state:

- Relatively small background.
- Relatively high branching ratio.

Branching ratio:

 $bb\tau\tau$ is the most sensitive decay channel with 36 fb^{-1} data![1]

Analysis I am working on

Lephad: high trigger efficiency (due to the lepton) Hadhad: high purity (much less $t\bar{t}$ background)

1. Combination of searches for Higgs boson pairs in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, The ATLAS collaboration, *Physics Letters B*, <u>doi:10.1016</u>

Selection: Yields

- Pre-selection:
 - Using Single lepton triggers and Lepton + τ_{had} triggers
 - $m_{\tau\tau}^{MMC}$ > 60 GeV
 - Exactly 2 b-tagged jets
 - Exactly 1 lepton and 1 au_{had} with opposite sign
 - *m_{bb}* < 150 GeV

W

 $L = 139 \, f b^{-1}$

Process	Pre-fit Yield	Stat. Error	
$tar{t}$	63140	120	
Fake $ au_{had}$	32900	150	
Single top	4180	50	
Z+jets	2320	60	
W+jets	84	11	
Single Higgs	174	2	
Di-boson	192	6	
Non-res. HH	7.46	0.03	

- The background due to a jet faking the τ_{had} is estimated by a data driven fake factor method (ABCD method)
- Normalisation of $t\bar{t}$ and Z + jets are determined from the fit from low NN region and Z->II control region
 - More details in backup

MVA classification

Parametric Neural Network (PNN) is used for the resonant signal for both Lephad and Hadhad $x_{l} =$ $f(x_1, x_2, \theta)$ Parametrised by resonant mass Events / 0.05 ATLAS Work in progress H(300) x 3112.3 Ldt = 139 fb ⁻¹ \sqrt{s} = 13 TeV ttbar 107 single top hh \rightarrow bb $\tau_{1}\tau_{1}$, 2 tags Zττ+bb NN(BDT) is used for Lephad (Hadhad) non-resonant Zττ+bc Zττ+bl Zττ+cc 10 Zττ+cl tt 16977.31 ATLAS Work In Progress s = 13 TeV, 140 fb Fakes (data) 23393255 Ζττ+Ι 2015-2018 data Signal scale to integral of background single top 4944.35 10 WIν Z+jets (Z→ττ) 882161 Z+iets 69302.61 Zee/μμ 10² V+iets 8286.97 fake Ntt 618.80 tt 59089.81 ATLAS Work In Progress DYττ Diboson 6182.05 s = 13 TeV, 140 fb 10 <u>ត</u>្ត18000 SLT Fakes (data) 31299.47 Higgs bkg. 16.26 Variable LTT 2015-2018 data DYee/μμ single top 3705.39 = diboson Z+jets (Z→ττ) 1281.2 m_{bb} Z+jets 843.82 14000E SM H $m_{\tau\tau}^{\rm MMC}$ W+jets 77.38 12000 E 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 Wtf 6.06 Diboson 160.80 m_{HH} 10000 PNN Score (300 GeV) Higgs bkg. 149.29 $\Delta R(\tau, \tau)$ 8000 Events / 0.1 ATLAS Work in progress 6000F hh (non-res) x 40548.9 $\Delta p_{\rm T}(\ell, \tau_{\rm had-vis})$ Ldt = 139 fb ⁻¹ √s = 13 TeV 4000 E ttbar $\Delta R(b, b)$ SM NN single top hh→bbτ₁τ_ь, 2 tags 2000 F $\Delta\phi(\tau^{\tau}, bb)$ Zττ+bb 0-tag validation region 0.1.5 1 Data/WC 0.5 Zττ+bc Sub-leading *b*-jet $p_{\rm T}$ 10 Zττ+bl $m_{\rm T}^W$ Ζττ+cc E_{π}^{miss} m_{HH} 10 Zττ+cl $E_{\rm T}^{\rm miss} \phi$ Centrality Ζττ+Ι Events tt 16977.31 ATLAS Work In Progress vs = 13 TeV, 140 fb Wlν Fakes (data) 2339388 $\Delta \phi(\ell, E_{\rm T}^{\rm miss})$ 2015-2018 data 10 single top 4944.35 tt 59089.79 Zee/μμ ATLAS Work In Progress s = 13 TeV, 140 fb Lange 18000 Z+jets (Z→ττ) 88210 16 10 $H_{\rm T}$ 2015-2018 data fake Z+jets 69302.61 single top 3705.39 ш́₁₆₀₀₀Г +jets 8286.97 DYττ $\Delta \phi(\tau \tau, E_{\rm T}^{\rm miss})$ Z+jets (Z→ττ) 1281-24 Ntt 618.80 Z+iets 843.82 DYee/ μμ 14000 Diboson 6182.05 W+jets 77.38 Higgs bkg. 16.26 diboson 12000 Wtt 6.06 Diboson 160.80 SM H 10000 Higgs bkg. 149.29 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 0 0.5 1 8000 Lephad Input NN Score (Non-res SM HH) 6000 4000E (SR preselection) 2000 PNN 400 õ 0 5 4.5 1-tag validation region $\Delta R(b,b)$

Uncertainties

- Experimental uncertainties:
 - Uncertainties on efficiencies, resolution, scale etc. of physics objects. Check <u>backup</u> for more details

Modelling uncertainties for major background

- $t\bar{t}$ & single top:
 - Matrix element, parton shower, initial/final state radiation(ISR/FSR), PDF + α_s
 - $t\overline{t}$: only consider shape as norm is freely floating in the limit
 - Single top: additional uncertainty due to interference
- Signal:
 - Resonant HH signal:
 - Scale variations, parton shower, PDF + α_s
 - Non-resonant HH signal:
 - Parton shower

General approach: split the normalisation and shape then parametrise the shape (which I have derived/studied most of them)

- Z + Heavy flavour jets:
 - Scale variations, alternative PDF, matrix element matching and re-summation scale variation.
 - Only consider shape

- Fake au_{had} (Lephad):
 - Statistical uncertainty on FF and r_{QCD}
 - Non $t\bar{t}$ subtraction
 - $t\bar{t}$ modelling

Limit setting

- Unfortunately, with the current dataset we are not expecting to see the SM non-resonant di-Higgs production
- We can still set limits on the upper limit on the cross section on the SM di-Higgs production (in bbtautau channel) and resonant signal mass
- Expected limits: derived from simulation
- Expected limit on Xs. with 36 fb^{-1} data in Lephad: 26.32 * Xs. (SM)
- Scale with luminosity (139 fb^{-1}), we expect the limit to be ~ 13 * Xs. (SM)
- The Lephad expected limit is 80% better!
- This is made possible by better b-tagging, tau-ID, tau-reconstruction, etc.

	Non resonant	-2 <i>o</i>	-1 σ	Expected	1σ	2σ
Lephad Xs/Xs(SM)	Stat-Only	3.08	4.13	5.73	7.98	10.70
	Stat+Syst	3.90	5.24	7.27	10.12	13.57
Hadhad Xs/Xs(SM)	Stat-Only	2.01	2.70	3.75	5.22	7.00
	Stat+Syst	2.51	3.37	4.68	6.52	8.73

Limit for resonant Lephad

Limit for resonant Hadhad

Backup: Signal and background

- Data:
 - Full run 2 data set with $L = 139 \text{ fb}^{-1}$
- Signal:
 - Non-res HH (SM, ggF): Powheg + Pythia8 (NLO with NNLO cross-section)
 - 2HDM X->HH (ggF): Madgraph5 + Herwig7 (NLO), 19 m_X points from 251 GeV to 1.6 TeV
- MC Backgrounds
- In order of contribution:
 - $t\bar{t}$ and single top: Powheg + Pythia8, $t\bar{t}$ norm freely floating
 - V (W,Z) + jets: Sherpa 2.2.1, Z + HF jets norm freely floating as determined by the Z + HF CR (more details in <u>backup</u>)
 - Di-boson (semi-leptonic): Sherpa 2.2.1
 - Single SM Higgs: Powheg+Pythia8

Backup: Background estimation: jet faking τ_{had}

jet faking τ_{had}

- The background due to a jet faking the τ_{had} is estimated by a data driven fake factor method (ABCD method)
- Anti-ID τ : reverting the Tau-ID to define a fake- τ enriched region
- Fake factor $FF = \frac{N_C}{N_D}$, $N_A = FF \times N_B$. FF is calculated for each CR, depends on channel/targeted process
- Lephad: a combined FF is calculated for combining the Gluon initiated and quark initiated (mostly $t\bar{t}$) FFs
 - $FF = FF_{QCD} \times r_{QCD} + FF_{t\bar{t}} \times (1 r_{QCD})$, where $r_{QCD} = \frac{N_{QCD}^{Fakes}}{N_{all}^{Fakes}}$.

Backup: object selection

Object selection

- Electrons:
 - Loose e-ID, loose isolation
 - $p_T > 7 \text{ GeV}, |\eta| < 2.47 + \text{crack veto}$
- Muons:
 - Loose muons with *PflowLoose_VarRadIso* isolation, $p_T > 7$ GeV, $|\eta| < 2.7$
- Taus:
 - Loose RNN Tau-ID, loose electron-veto
 - $p_T > 20 \text{GeV}, |\eta| < 2.5 + \text{crack veto}$
 - 1- or 3-prong
- Anti-Taus
 - Fail loose RNN Tau-ID and RNN score > 0.01

- Jets:
 - Anti- k_t R=0.4 particle flow jets
 - Jet cleaning & tight JVT
 - pT>20GeV, |η| <2.5
- b-tagging
 - DL1r with 77% WP
- MET
 - PFLow MET (TST)
- OLR
 - ASG OLR tool with dedicated jet- τ_{had} OLR:
 - τ_{had} > b-tagged jet > anti- τ_{had} > untagged-jet

Backup: Experimental uncertainties

- Jets:
 - JES (CategoryReduction) & JER (FullJER)
- Flavor tagging:
 - medium reduction
- Electrons:
 - scale, resolution, efficiencies (trigger, reco, ID, isolation)
- Muons:
 - momentum-calibration + efficiencies (reco, TTVA, iso)(muon trigger currently missing)
- Taus:
 - TES + efficiencies (eVeto,τhad-ID, trigger) SoftTrk
- MET:
 - Scale & Resolution

Backup: Selection for Hadhad channel

Triggers: Hadhad

- Single τ_{had} triggers (STT)
 - HLT thresholds on $\tau_{had} p_T$ between 80 and 160 GeV, offline requirement p_T > HLT threshold + 20 GeV
 - Supplemented by non-isolated triggers
 - Apply before DTT. If failed STT, then pass the event through DTT

• Di- τ_{had} triggers (DTT)

• Threshold on HLT $\tau_{had} p_T$ 35 (25) GeV for leading (sub-leading) τ_{had} , offline requirement p_T > HLT threshold + 5 GeV

Event selection

- All channels:
 - Pass triggers & matching of τ_{had} -legs
 - Offline trigger eff. plateau cuts on leptons, $\tau_{had},$ and jets at L1
 - $m_{\tau\tau}^{MMC}$ > 60 GeV (Missing Mass Calculator used to reconstruct $\tau\tau$ -system)
 - At least two central jets (one with $p_T > 45$ GeV)
 - Hadhad
 - No e/μ
 - Exactly 2 loose τ_{had}
 - For L1Topo-triggered events: $\Delta R(\tau_{had}, \tau_{had}) < 2.5$

Backup: Z+HF CR

Pre-fit and post-fit m_{ll} distribution in the Z+HF CR

- The cross section of Z boson production in association with heavy flavour (b,c) jets is known to be not well predicted by the Sherpa MC and so these processes are normalised to data in a control region.
- Events selected with bbll trigger selection using single-lepton and di-lepton triggers
- Exactly two muons or two electrons with opposite-sign charges
- Exactly two b-tagged jets
- 75 GeV < m_{ll} < 110 GeV (select Z mass peak
- m_{bb} < 40 GeV or m_{bb} > 210 GeV (to veto Higgs mass peak and to ensure orthogonality to bbll signal region).
- This control region is included in the final fit as m_{ll} distribution shown in above figure.
- From a fit to data of this CR alone the normalisation of the Z+HF background is found to be 1.29 ± 0.019