LIVERPOOL HEP (DEFERRED) CHRISTMAS MEETING 28/04/2021

Matthew Cox Supervisors: Neil McCauley, Joachim Rose & Valentina Lozza (LIP)

SNO+ EXPERIMENT OVERVIEW

- SNO+ is a neutrino detector based 2km underground
 - Low cosmic background: ~65 muons each day
- Upgraded from SNO (Nobel prize winning) experiment
- Main scientific goal:
 - Neutrinoless double beta decay (0vββ)
- Several other scientific goals, including:
 - Antineutrino studies
 - Supernova & Solar neutrino observations
 - Invisible nucleon decay (ND) studies

SNO+ EXPERIMENT PHASES & FILLING

Three main phases to SNO+:

Water Cherenkov – 900 tonnes of Ultra Pure Water
 2 years of data taken (May 2017 – July 2019)

*Phase 1.5: *Current Analysis Period* Detector partially filled with 364 tonnes of LAB + Fluor PPO (March 2020 – October 2020)

- Pure Liquid Scintillator 780 tonnes of LAB + PPO Detector is now "full" → Yay! :-D
- Tellurium Doped Liquid Scintillator additional 3.9 tonnes of Te (i.e. 1.3 tonnes of ¹³⁰Te)
 5 years of predicted data taking

Slide 3

780 tonnes of LAB (Fully Filled)

SNO+ EXPERIMENT PHASES & FILLING

Three main phases to SNO+:

Water Cherenkov – 900 tonnes of Ultra Pure Water
 2 years of data taken (May 2017 – July 2019)

*Phase 1.5: *Current Analysis Period* Detector partially filled with 364 tonnes of LAB + Fluor PPO (March 2020 – October 2020)

- Pure Liquid Scintillator 780 tonnes of LAB + PPO Detector is now "full" → Yay! :-D
- Tellurium Doped Liquid Scintillator additional 3.9 tonnes of Te (i.e. 1.3 tonnes of ¹³⁰Te)
 5 years of predicted data taking

SNO+ EXPERIMENT PHASES & FILLING

Three main phases to SNO+:

Water Cherenkov – 900 tonnes of Ultra Pure Water
 2 years of data taken (May 2017 – July 2019)

*Phase 1.5: *Current Analysis Period* Detector partially filled with 364 tonnes of LAB + Fluor PPO (March 2020 – October 2020)

- ➢ Pure Liquid Scintillator 780 tonnes of LAB + PPO Detector is now "full" → Yay! :-D
- Tellurium Doped Liquid Scintillator additional 3.9 tonnes of Te (i.e. 1.3 tonnes of ¹³⁰Te)
 5 years of predicted data taking

Slide 3

780 tonnes of LAB (Fully Filled)

STUDIES AT LIP - LISBON

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

(α, n) BACKGROUND IN SNO+

- All α-decays in the detector contribute to (α,n) background, Sources include:
 - Intrinsic scintillator purity
 - Introduction of Rn and Po during filling
 - Rn ingress
 - Leaching of Rn daughters from AV
- ²¹⁰**Po** is the dominant α source
- (α,n) reactions act as a background for multiple SNO+ studies
- Dominant background for Antineutrino analysis
 - (α,n) mimics Inverse Beta Decay (IBD) signals

Figure adapted from Dr Valentina Lozza's "(α ,n) events in SNO+" talk [(α ,n) yield in low backgrounds conference, 21-22 /11/19]

Slide 4

EXPECTATION COINCIDENCE SIGNALS

Identified Coincidences have 3 potential sources:

Event Type	Event Sub-Type	Events After Cuts	
(α,n)	Bulk	16.0	
	Surface	0.7	
Antineutrino	Geo	1.1	
	Reactor	2.7	
Accidental /	Events from	0.5	
Background	Sideband Analysis	(1ms window)	
Totals Expected Events		21	
Totals Observed Events		23	

- FV cut applied at Radius = 5.8m to suppress Surface events
 - Region 10cm above Water-LAB interface also excluded
- (α ,n) study subject to blinding on Prompt energy signals > 2.75 MeV

Slide 5

Blinding imposed on Reactor Antineutrinos

 \triangleright

- Good agreement between observed and expected events
 - Corroborates measured ²¹⁰Po rate (R_{Po210})

OBSERVED EVENTS: PMT HITS/ENERGY

- PMT hits used as a proxy for energy
 - Scintillator light yield ~300 PMT hits/MeV
- Imposed PMT hit (*Energy*) cuts:
 - Prompt Signal: 225 800 hits (0.75 2.65 MeV)
 - Proton Recoil Signal
 - Delay Signal: 575 725 hits (1.9 2.4 MeV)
 - Characteristic 2.2 MeV neutron capture signal

Slide 6

- Data and MC for are compatible for both Prompt and Delay signals
 - Low statistics for Data

OBSERVED EVENTS (INTER-SIGNAL CUTS)

- Distance cut between Prompt and Delay signals < 2m
- Time between prompt and delayed events (Δt cut): 400ns – 1.1ms
- Good agreement between MC and Data

FUTURE DIRECTION OF (α, n) STUDIES

- Analysis of Surface (α, n) events
 - ²¹⁰Po activity used to derive thick target neutron yield (A_{α,n})
 - > Develop method to discriminate between (α,n) reactions
- Discrimination method between (α,n) and Antineutrino coincidences
 - > Examine PMT hit-time residuals of known (α ,n) events
 - > IBD (α, n) Classifier developed by Charlie Mills
 - Confirm (α,n) spectra in data matches MC predictions Thus, verifying classifier's accuracy
- Analysis of full scintillator data
 - Revise and apply all appropriate cuts
 - > Investigate (α ,n) process at higher prompt energies
 - Quantify (α,n) levels for the next data taking period

 (α,n) expectation value equation

$$N_{all}^{\alpha,n} = R_{Po210} \cdot A_{\alpha,n} \cdot t$$

 $A_{\alpha,n}$ = number of neutrons produced per alpha in a certain medium (LAB, Acrylic, etc.)

MC simulation of IBD and (α,n) hit-time residuals *Analysis performed by Charlie Mills*

- (α,n) Background:
 - (α,n) process is a major background for antineutrino studies (mimics coincidence signal of Inverse Beta Decay)
- Observations for Data Taking Period:
 - > 23 observed coincidences in agreement with 21 expected events
 - Good agreement between MC and Data spectra
- Future Direction:
 - > Develop analysis of (α, n) AV Surface events
 - $_{\circ}$ Separate different (α ,n) reactions
 - Verify thick neutron yield value using ²¹⁰Po Surface activity
 - Investigate (α,n) event hit time residuals -> Confirm MCs match events in data & corroborate classifier's accuracy
 - > Tailor current (α ,n) Bulk [and later Surface] analysis for application to the full detector

BACKUP SLIDES

(α,n) SOURCES

- All α -decays in the detector contribute to (α ,n) background
- Radon Daughters are a prominent source of alphas in LAB (if secular equilibrium is not maintained)
- Alpha sources:
 - Intrinsic scintillator purity and introduction of Rn and Po during filling operations
 - $_{\circ}$ ²¹⁰Po is the dominant α source
 - Radon ingress minimised but not fully eliminated
 - Leaching of Radon daughters plated on the AV's surface throughout AV's lifetime particularly ²¹⁰Pb

Other Alpha

Decays in

Chain

234 92

245,500 Years

230 **Th** 90 **T**5,380

²³⁴ Pa 91 Pa 27 Davs Uranium

Protactinium

Thorium

238 92

4.5e9 Years

90 Th

27 Days

(α, n) AS A BACKGROUND

 (α, n) reactions act as a background for multiple SNO+ studies:

- Antineutrino analysis -•
 - Reactor and geoneutrinos produce Inverse Beta Decay (IBD) signals
 - (α,n) mimics IBD coincidence signals
- Neutrinoless double beta decay analysis -
 - Proton recoil and neutron capture signals can individually fall within the ROI for $0\nu\beta\beta$
- Invisible Nucleon Decay (ND) analysis -•
 - High energy gammas from ¹⁶O de-excitation can fall into Regions of Interest (ROI) for ¹⁵O* and ¹⁵N*decay modes

Predicted neutrinoless double beta decay and background signals* *AlphaN rejection already applied to plot

V. Fisher, CIPANP 2018 - Phys. Rev. C 48, 1442

COINCIDENCE EXPECTATION VALUES - (α, n) Contribution

True (α, n) Event Contribution:

$$N_{all}^{\alpha,n} = R_{Po210} \cdot A_{\alpha,n} \cdot t$$

- ²¹⁰Po rate measured
- (α,n) contributions from detector Bulk and from AV surface
- FV cut applied to suppress Surface events
 - Radius = 5.8m & Z = 0.85m
- Expectation value scaled by cut efficiency

Variable	Definition	Value
<i>R</i> _{Po210}	Bulk ²¹⁰ Po Rate	100 Bq
$oldsymbol{A}_{lpha,oldsymbol{n}}$	Thick Target Neutron Yield in Medium (¹³ C in LAB)	6.11x10 ⁻⁸ neutrons per alpha particle
t	Data Taking Period	1644 hours (68.5 days)
$N_{all}^{lpha,n}$	Bulk (α,n) Expectation Value	36

(*α*,*n*) Event Parameters

COINCIDENCE EXPECTATION VALUES - ANTINEUTRINOS

Antineutrino Signals:

- Expectation values for full detector over one year period:
 - ➢ Geoneutrinos = 25.2
 - Reactor neutrinos = 158.4
- Values scaled for data taking period and partial fill LAB volume
- Analysed period subject to blinding for Reactor antineutrinos
 Limits current (α,n) analysis to proton recoil signals only

COINCIDENCE EXPECTATION VALUES -BACKGROUND/ACCIDENTALS

- ²¹⁰Po singles, ²¹⁰Bi singles and ²¹⁴Bi-²¹⁴Po coincidences
- Rate of accidental (background) events determined by sideband analysis
- Sideband Analysis: analysis of ROI where no (α,n) events are expected
 - > Sideband Δt range: 1.1ms 5.1ms
- Largest source of uncertainty

FULL BREAKDOWN OF EXPECTATION AND EFFICIENCY VALUES

Event Type	Event Sub-Type	Expectation Values (for 68.5 days)	Cut Efficiency (%)	Events After Cuts
	Bulk	36.2	44.3	16.0
(α,n)	Surface	452.1	Supressed*	0.7
	Geo	1.9	58.6	1.1
Antineutrino	Reactor	12.1	22.4	2.7
Accidental /	Events in Full	2	-	0.5
Background	Sideband Analysis	(4ms window)		(1ms window)
	21			
Totals Observed Events				23

*Surface (α, n) has individual cut efficiencies for C and O isotopes in different media (Acrylic, LAB, etc.) All efficiencies of the order of 0.01 – 0.1% and are therefore displayed as suppressed

WATER ANALYSIS BACK-UP SLIDES

RADON ANALYSIS CONTEXT

- Natural Radon gas present in mine air (130 Bq/m³ at SNOLAB)
- Ingress breaks the secular equilibrium of Thorium 232 & Uranium 238 decay chains (²³⁸U is more significant)
- Radon 222's daughters are a background for Nucleon Decay and Solar Neutrino studies
 - Cherenkov detectors not sensitive to α radiation
 - Beta radiation of Bismuth 214 is a dominant background
- Bismuth 214 used as a proxy to calculate Radon levels in detector
- Previous day-by-day monitoring carried out essentially in real-time (during water phase)
 - Detector data reprocessed using more accurate detector conditions. Analysis performed on this data

BISMUTH 214 ANALYSIS TECHNIQUE

- Analysis performed using an algorithm to determine Bismuth 214 event density rates
- Performed for 3 Fiducial Volumes (FVs)
- Individual analysis performed of spherical, hemispherical and segmented regions
- Data compared to MC simulations to derive gram for gram comparisons of
 ²³⁸U to H₂O

Algorithm Analysis

Data cleaning cuts applied: exclude instrumental noises

Energy and position values used to reconstruct events

Isotropy cut applied: Cherenkov signal is anisotropic

ITR cuts applied: Exclude events with broad timing distributions

Energy cuts applied: Exclude events below 3.5 MeV

Fiducial Volume cuts applied: Reduce backgrounds from regions other than analysed volume

U.R cuts applied: [External data only] Red Rejected, Yellow Accepted

BISMUTH 214 REANALYSIS RESULTS

Redacted

Comparisons drawn between average values and spectral shapes

Back-up Slide 9

Spectral shapes agree well (Small discrepancies due to binning)

Any discrepancies investigated and explained — Reprocessed average purity approx. x2 better For reprocessed data:

- Event reconstruction improved for external events
- Internal reconstruction more uniform across detector
- Energy calibration factor potentially required