

Search for Sterile Neutrinos at the Short Baseline Neutrino Program

Thomas Ham Supervisor: Prof. Costas Andreopoulos

April 2021

The SBN Program

- 3 LArTPC detectors at baselines ranging from 110 600m.
- Located along the Booster neutrino beam at Fermilab.
- Main goal is to search for light sterile neutrinos.
- Motivated by the LSND, MiniBooNE, Gallium & Reactor anomalies.
- Excess or deficit of observed events may be explained by oscillations with an eV scale neutrino.

Oscillation Probability

• PMNS mixing matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix}$$

• For the case $\Delta m_{41}^2 \gg |\Delta m_{31}^2|$, Δm_{21}^2 , short baseline oscillations are approximated by $(\Delta m^2 I)$

$$P_{\mu \to \mu} = 1 - 4|U_{\mu 4}|^2 (1 - |U_{\mu 4}|^2) sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$
$$P_{\mu \to e} = 4|U_{\mu 4}|^2 |U_{e 4}|^2 sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$
$$P_{e \to e} = 1 - 4|U_{e 4}|^2 (1 - |U_{e 4}|^2) sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

• ν_e appearance automatically implies ν_e and ν_μ disappearance.

Analysis

- Produce a fit by combining oscillation physics + the cross-section, flux and detector uncertainties.
- Combine data from all three detectors to produce a single SBN fit.
- Currently, the analysis of the ν_e appearance, and $\nu_{e/\mu}$ disappearance channels are independent.

Oscillation Physics (with simultaneous constraint on flux, cross-section and detector systematics)

Spectra (ν_{μ} sample)

- Nominal ν_{μ} spectrum in the far-detector with interaction mode breakdown.
- Overlayed with integrated oscillated spectrum (ν_{μ} disappearance).
- Assuming a POT of 6.6×10^{20} (3 years of detector operation)

Spectra (ν_e sample)

- Nominal ν_e spectrum in the far-detector with interaction mode breakdown overlayed with integrated oscillated spectrum.
- Neutrino beam is predominantly u_{μ} Event rate for $u_e <<
 u_{\mu}$

Osc params: $sin^2 2\theta_{\mu e} = 0.003$, $\Delta m^2_{41} = 1eV$, $sin^2 2\theta_{ee} = 0.053$, $\Delta m^2_{41} = 1.32eV$

ν_{μ} Sensitivities

- Sensitivities produced using the VALOR SBN analysis framework.
- Obtain a sensitivity for the entire SBN program (combine all three detectors).

- Using a 3+1 framework.
- Independent ν_{μ} disappearance analysis.
- VALOR exclusion contours: Applying flux + interaction systematics (no detector)

ν_e Sensitivities

- Independent ν_e appearance and disappearance analyses.

Conclusion

- Three LArTPC's investigating multiple oscillation channels.
- Currently have individual analyses of ν_{μ} disapp, ν_{e} app and ν_{e} disapp.
- Eventual goal is to perform a joint analysis of the different oscillation channels.

- Previous individual results in favour of sterile neutrinos only at the 3σ 4σ level.
- SBN will provide a definitive test at the 5σ level.

Sterile neutrino motivation

- LSND and MiniBooNE observed and excess of electron (anti) neutrinos from a numu beam.
- Reactor anomaly: Deficit of electron anti-neutrinos observed from β⁻ decays in fission products.
- Gallium anomaly: Deficit of electron neutrinos observed from radioactive sources decaying via electron capture which were placed in soloar neutrino experiments, SAGE and GALLEX.

SBND & uB spectra

nue appearance

Flux Systematics

Optical flux parameters

Parameter	Description	Uncertainty
Skin Effect	Depth that the current penetrates the horn conductor	< 18%
Horn Current	Current running in the horn conductor	$\pm 0.6\%$

Hadronic interaction flux parameters (Berillium target, Aluminum horn)

Denometer	Description		Uncertainty		
rarameter			Al		
Nucleon Inelastic σ	Secondary nucleon interactions in the target (Be) and horn (Al), inelastic cross-section	$\pm 5\%$	$\pm 10\%$		
Nucleon QE σ	Secondary nucleon interactions in the target (Be) and horn (Al), quasi-elastic cross-section	$\pm 20\%$	$\pm 45\%$		
Nucleon Total σ	Secondary nucleon interactions in the target (Be) and horn (Al), total cross-section	$\pm 15\%$	$\pm 25\%$		
Pion Inelastic σ	Secondary pion interactions in the target (Be) and horn (Al), inelastic cross-section	$\pm 10\%$	$\pm 20\%$		
Pion QE σ	Secondary pion interactions in the target (Be) and horn (Al), quasi-elastic cross-section	$\pm 11.2\%$	$\pm 25.9\%$		
Pion Total σ	Secondary pion interactions in the target (Be) and horn (Al), total cross-section	$\pm 11.9\%$	±28.7%		

Flux Systematics cont.

Parameter	Description	Uncertainty			
1 arameter		ν_{μ}	$\bar{\nu}_{\mu}$	ν_e	$\bar{\nu}_e$
π^+	Neutrino production mechanism: π^-	$\pm 11.7\%$	$\pm 1.0\%$	$\pm 10.7\%$	$\pm 0.03\%$
π^{-}	Neutrino production mechanism: π^-	$\pm 0.0\%$	$\pm 11.6\%$	$\pm 0.0\%$	$\pm 3.0\%$
K^+	Neutrino production mechanism: K^-	$\pm 0.2\%$	$\pm 0.1\%$	$\pm 2.0\%$	$\pm 0.1\%$
K^{-}	Neutrino production mechanism: K^-	$\pm 0.0\%$	$\pm 0.4\%$	$\pm 0.0\%$	$\pm 3.0\%$
K^0	Neutrino production mechanism: K^0	$\pm 0.0\%$	$\pm 0.3\%$	$\pm 2.3\%$	$\pm 21.4\%$
Other*	Neutrino produced by another source	$\pm 3.9\%$	$\pm 6.6\%$	$\pm 3.2\%$	$\pm 5.3\%$

Hadronic production flux parameters

Proposal Interaction Systematics

Proposal neutrino interaction cross-section parameters

Parameter	Description	$\delta P/P$
$f_{M_A^{CCQE}}$	Axial mass for CC quasi-elastic	$-15\% \ +25\%$
$f_{M_A^{CCRES}}$	Axial mass for CC resonance neutrino production	$\pm 20\%$
$f_{M_A^N CRES}$	Axial mass for NC resonance neutrino production	$\pm 20\%$
f_{NC}	Additional error on NC/CC ratio	$\pm ?\%$
$f_{nR_{\nu n}}^{CC1\pi}$	Non-resonance bkg normalisation in $\nu n \ {\rm CC1}\pi$ reactions	$\pm 50\%$
$f_{nR_{\nu p}}^{CC1\pi}$	Non-resonance bkg normalisation in $\nu p~{\rm CC1}\pi$ reactions	$\pm 50\%$
$f_{nR_{\nu n}}^{CC2\pi}$	Non-resonance bkg normalisation in $\nu n~{\rm CC}2\pi$ reactions	$\pm 50\%$
$f_{nR_{\nu p}}^{CC2\pi}$	Non-resonance bkg normalisation in $\nu p~{\rm CC}2\pi$ reactions	$\pm 50\%$
$f_{nR\bar{\nu}n}^{CC1\pi}$	Non-resonance bkg normalisation in $\bar{\nu}n~{\rm CC}1\pi$ reactions	$\pm 50\%$
$f_{nR_{\bar{\nu}p}}^{CC1\pi}$	Non-resonance bkg normalisation in $\bar{\nu}p~{\rm CC}1\pi$ reactions	$\pm 50\%$
$f_{nR_{\bar{\nu}n}}^{CC2\pi}$	Non-resonance bkg normalisation in $\bar{\nu}n$ CC2 π reactions	$\pm 50\%$
$f_{nR\bar{\nu}p}^{CC2\pi}$	Non-resonance bkg normalisation in $\bar{\nu}p$ CC2 π reactions	$\pm 50\%$
$f_{nR_{\nu n}}^{NC1\pi}$	Non-resonance bkg normalisation in $\nu n \; {\rm NC1}\pi$ reactions	$\pm 50\%$
$f_{nR_{\nu p}}^{NC1\pi}$	Non-resonance bkg normalisation in $\nu p \ {\rm NC1}\pi$ reactions	$\pm 50\%$
$f_{nR_{\nu n}}^{NC2\pi}$	Non-resonance bkg normalisation in $\nu n \; {\rm NC} 2\pi$ reactions	$\pm 50\%$
$f_{nR_{\nu p}}^{NC2\pi}$	Non-resonance bkg normalisation in $\nu p~{\rm NC}2\pi$ reactions	$\pm 50\%$
$f_{nR\bar{\nu}n}^{NC1\pi}$	Non-resonance bkg normalisation in $\bar{\nu}n$ NC1 π reactions	$\pm 50\%$
$f_{nR_{\bar{\nu}p}}^{NC1\pi}$	Non-resonance bkg normalisation in $\bar{\nu}p$ NC1 π reactions	$\pm 50\%$
$f_{nR_{\bar{\nu}n}}^{NC2\pi}$	Non-resonance bkg normalisation in $\bar{\nu}n$ ${\rm NC}2\pi$ reactions	$\pm 50\%$
$f_{nR\bar{\nu}p}^{NC2\pi}$	Non-resonance bkg normalisation in $\bar{\nu}p$ NC2 π reactions	$\pm 50\%$

Modern Interaction Systematics

•

Parameter	Description	$\delta P/P$
$f_{M_A^{NCEL}}$	Axial mass for NC elastic	$\pm 25\%$
$f_{\eta^{NCEL}}$	Strange axial form factor for NC elastic	$\pm 30\%$
$f_{M_V^{CCRES}}$	Vector mass for CC resonance neutrino production	$\pm 10\%$
$f_{M_V^{NCRES}}$	Vector mass for NC resonance neutrino production	$\pm 10\%$
f_{2p2h}	Normalisation uncertainty for 2p2h interactions	$\pm 100\%$
$f_{A_{HT}}$	Higher-twist parameter A for NC and CC DIS events	$\pm 25\%$
$f_{B_{HT}}$	Higher-twist parameter B for NC and CC DIS events	$\pm 25\%$
f_{Cv1u}	Valence p.d.f. correction factor C_{v1u} for NC and CC DIS events	$\pm 30\%$
$f_{C_{v2u}}$	Valence p.d.f. correction factor C_{v2u} for NC and CC DIS events	$\pm 40\%$
$f_{M_A^{COH}}$	Axial mass for NC and CC coherent pion production	$\pm 50\%$
$f_{R_0^{COH}}$	Nuclear size parameter controlling π absorption	$\pm 20\%$
$f_{\Delta \rightarrow N\gamma}$	Branching ratio for Δ radiative decay	$\pm 50\%$

Modern Interaction Systematics cont.

Parameter	Description	$\delta P/P$
$f_{\lambda_{\pi}}$	Intranuclear mean free path for pions	$\pm 20\%$
$f_{R_{\pi}^{CEx}}$	Intranuclear charge exchange rescattering fraction for pions	$\pm 50\%$
$f_{R_{\pi}^{Inel}}$	Intranuclear inelastic rescattering fraction for pions	$\pm 40\%$
$f_{R_{\pi}^{\pi}}$	Intranuclear pion-production rescattering fraction for pions	$\pm 20\%$
$f_{R_{\pi}^{Abs}}$	Intranuclear absorption fraction for pions	$\pm 20\%$
f_{λ_N}	Intranuclear mean free path for nucleons	$\pm 20\%$
$f_{R_N^{CEx}}$	Intranuclear charge exchange rescattering fraction for nucleons	$\pm 50\%$
$f_{R_N^{Inel}}$	Intranuclear inelastic rescattering fraction for nucleons	$\pm 40\%$
$f_{R_N^{\pi}}$	Intranuclear pion-production rescattering fraction for nucleons	$\pm 20\%$
$f_{R_N^{Abs}}$	Intranuclear absorption fraction for nucleons	$\pm 20\%$

Modern neutrino FSI parameters

Detector Systematics

	Applies to					
Systematic	Beam	Detector	Sample	Mode	Reco. energy bin edges	
$f_0 - f_7$	FHC	SBND	ν_{μ} CC-like	$signal/\nu_{\mu}CC$	$\{0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, \infty\}$	
f ₈ - f ₁₃	FHC	SBND	ν_{μ} CC-like	bkg/NC	$\{0, 0.2, 0.4, 0.6, 0.8, 1.0, \infty\}$	
f_{14}	FHC	SBND	ν_{μ} CC-like	bkg/Dirt	$\{0, \infty\}$	
f_{15}	FHC	SBND	ν_{μ} CC-like	bkg/Cosmics	$\{0, \infty\}$	
f16 - f24	FHC	SBND	$\nu_e CC$ -like	$signal/\nu_e CC$	$\{0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, \infty\}$	
f25 - f33	FHC	SBND	ν_e CC-like	$bkg/\nu_{\mu}CC$	$\{0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, \infty\}$	
f34 - f42	FHC	SBND	ν_e CC-like	$bkg/NC1\gamma$	$\{0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, \infty\}$	
f ₄₃ - f ₅₁	FHC	SBND	ν_e CC-like	$bkg/NC1\pi^0$	$\{0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, \infty\}$	
f ₅₂ - f ₆₀	FHC	SBND	ν_e CC-like	bkg/NCother	$\{0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, \infty\}$	
f ₆₁ - f ₆₆	FHC	SBND	ν_e CC-like	bkg/Dirt	$\{0, 0.2, 0.4, 0.6, 0.8, 1.0, \infty\}$	
f67 - f72	FHC	SBND	ν_e CC-like	bkg/Cosmics	$\{0, 0.2, 0.4, 0.6, 0.8, 1.0, \infty\}$	
f73 - f145	As abov	e, but for μ	В			
f ₁₄₆ - f ₂₁₈	As above, but for ICARUS					

Sensitivities with Detector Systematics

- Exploring impact of fully correlated error (uncorrelated error at 0%).
- Exploring impact of uncorrelated error (correlated error fixed to 2%).

