

Darkside-20k

Kostas Mavrokoridis

K.Mavrokoridis@liverpool.ac.uk

HEP Meeting, April 29th 2021

Outline

- Darkside-20k experiment overview
- Darkside-20k outer detector and new Liverpool activities

Why Liquid Argon?

- ✓ **Dense**: 40% denser than water
- ✓ Easy ionization: 55 000 e⁻/cm for MIPs
- ✓ **High electron lifetime** if purified → long drifts
- ✓ High scintillation light yield: 40k γ/MeV
- Yelse shape discrimination ability: (S1:fast 6ns/slow 1.6 μs)
- ✓ Broad recoil energy spectrum: (0-100keV)
- ✓ Abundant: ~1% of the atmosphere (needs ³⁹Ar depletion for DM)
- ✓ **Cheap**: \$2/L (\$3000/L for Xe, \$500/L for Ne)

experimental requirements: particle ID for recoil N, e-, alpha, n (multiple) final states

Darkside-20k Outlook

DarkSide-20k: 50t liquid underground Ar (UAr) dark matter target, inside a 700t liquid atmospheric Ar (AAr) outer detector

- Physics data-taking timescale 2023—2028.
- Expected sensitivity two orders of magnitude above current experiments at 1 TeV WIMP mass, with sensitivity from sub-GeV to the multi-TeV regime.

DarkSide-20k aims to be a background-free detector

- Expected background with full exposure <0.1 events.
- First large-scale use of large-area cryogenic Si photodetection modules ("PDMs") instead of PMTs
 - UK will deliver photodetection modules for the outer detector

Darkside-20k: Key innovation on Photon Sensors

• Low noise, high efficiency, cryogenic Si sensors developed in collaboration with FBK in dedicated 5+ year program

>3x photon detection efficiency, 10x lower noise, >50x lower radiogenic backgrounds than PMTs.

Darkside-History

DarkSide is multi-stage program that aims to the direct detection of **Dark Matter**, by operating a dual phase **Underground Argon** (**UAr**) time projection chamber (**TPC**), at the underground **Laboratori Nazionali del Gran Sasso**.

It lives within the Global Argon Dark Matter Collaboration (GADMC): past and current experiments (DEAP-3600, MiniCLEAN, ArDM and DarkSide-50) joining forces for the next generation liquid Argon Dark Matter detectors

Global argon dark matter collaboration: >400 researchers 14 countries: Brazil, Canada, China, France, Greece, Russia, Italy, Mexico, Poland, Romania, Spain, Switzerland, UK, USA.

Darkside-20k: 50t TPC

K. Mavrokoridis

DarkSide-20k TPC

- 50t of depleted **UAr**
- Octagonal sealed acrylic TPC
- Clevios conductive polymer coating for
 - anode, cathode and field cage rings
- Enhanced Specular Reflector
- TPB coated as WLS.

350 cm

Each **detection plane** is composed by **4140 PDM**s grouped in **344** Photo Detection Units (**PDUs**)

PDU: 25x25x5cm 25ch

Darkside-20k | HEP meeting | Apr 2021

Scintillation S1 light

Very different decay times of **singlet** (~7ns) vs. **triplet** (~1.6µs) state.

Electron Recoils cause a higher fraction of **triplet** states than Nuclear Recoils.

The resulting signals have different shapes that can be discriminated by using **PSD** techniques (f_{90} fraction of signal in the first 90ns).

 NR band from the AmBe calibration
ER band from β-γ backgrounds.
Exceptional discrimination up to 10⁹ (from DEAP-3600@SNOLAB)

Electroluminescence light S2

S2 proportional electroluminescence allows **xy** reconstruction. By the **S2-S1 time difference** the **z** coordinate of the interaction can be calculated.

Gain on ionization signal (S2) allows to easily detect **single ionization electrons** resulting in a lower the detection threshold (Low Mass DM)

Distillation Column - Depleted ³⁹Ar

ARIA

New **distillation column**, 350m tall installed in the coal mine well in Nuraxi Figus, **Sardinia**. **UAr** will be **chemically distilled** at a rate of **It** per day. Further ³⁹Ar reduction factor 10 per pass can be achieved (most important in low mass DM search).

DarkSide-20k ARIA, URANIA and DArT

K. Mavrokoridis

Darkside-20k Liquid Argon Neutron Veto

Veto is key to achieving design sensitivity

- Cryostat Proto-DUNE design delivered by CERN Neutrino Platform and DarkSide-20k project office at CERN
- Allows elimination of Liquid Scintillator Veto and water tank
- Design makes use of ultraradiopure acrylic (DEAP) and Gd (SuperK)
- Must achieve 90% neutron capture efficiency

Passive Gd-loaded plastic

Inner Active veto (AAr)

Acrylic TPC

40 t UAr TPC

DarkSide UK - Outer detector (Veto) PDMs production in UK

Successful STFC bid

UK institutions	Responsibilities	
Liverpool	Epoxy Die Bonding, Cold Test platform	
RAL	Flip chip Bonding, dicing development	
Manchester	PDMs assembly	
Birmingham	FEB	
RHUL	Radiopurity qualification	
Warwick	Warm optical calibration	
Lancaster	Detector characterization analysis	
Edinburgh	Detector characterization analysis	

<u>The team</u>		
Name	Role	
Kostas Mavrokoridis	Overall coordination PDMs characterization Warm and Cold in UK	
Joost Vossebeld	Overall coordination of low radioactivity bonding in UK	
Jon Taylor	Epoxy Die Bonding	
Technical staff	Epoxy Die Bonding	
Adam Roberts	Cold platform and tests	
More		

K. Mavrokoridis

Darkside-20k | HEP meeting | Apr 2021

Cryogenic Characterisation of PDMs at Liverpool

Test up to 400 PDMs in the cryostat

Tentative Schedule

Aim to build and test 3000 outer detector PDMs over the next 3 years for delivery to Gran Sasso.

Darkside-20k | HEP meeting | Apr 2021

Thank you!