

ICECUBE Neutrino Observatory

James Vincent Mead

Digital optical module arrays

• IceCube detector

UNIVERSITY OF

- ν -ice interactions \rightarrow relativistic charged particles
- Superluminal products emit Cherenkov photons
- Instrumentation
 - 5160 sensors embedded within 1 km³ of glacial ice
 - Low-energy dark matter array at 5x density, **DeepCore**

Low-energy extension

• IceCube detector

UNIVERSITY OF

COPENHAGEN

- ν -ice interactions \rightarrow relativistic charged particles
- Superluminal products emit Cherenkov photons

Instrumentation

- 5160 sensors embedded within 1 km³ of glacial ice
- Low-energy dark matter array at 5x density, **DeepCore**
- **Upgrade** (installation 2022-2023)
 - 7 columns of improved sensors at 10x density
 - Extending low energy range & building upon calibration tools
- Gen-2 (operational 2033)
 - 10km³ instrumented volume for huge boost in statistics
 - New surface radio array for Askaryan photons

20/08/2021

High-energy extension

UNIVERSITY OF

COPENHAGEN

- ν -ice interactions \rightarrow relativistic charged particles
- Superluminal products emit Cherenkov photons

Instrumentation

- 5160 sensors embedded within 1 km³ of glacial ice
- Low-energy dark matter array at 5x density, **DeepCore**
- **Upgrade** (installation 2022-2023)
 - 7 columns of improved sensors at 10x density
 - Extending low energy range & building upon calibration tools
- **Gen-2** (operational 2033)
 - 10km³ instrumented volume for huge boost in statistics
 - New surface radio array for Askaryan photons

20/08/2021

UH-energy extension

UNIVERSITY OF

- ν -ice interactions \rightarrow relativistic charged particles
- Superluminal products emit Cherenkov photons
- Instrumentation
 - 5160 sensors embedded within 1 km³ of glacial ice
 - Low-energy dark matter array at 5x density, **DeepCore**
- **Upgrade** (installation 2022-2023)
 - 7 columns of improved sensors at 10x density
 - Extending low energy range & building upon calibration tools
- **Gen-2** (operational 2033)
 - 10km³ instrumented volume for huge boost in statistics
 - New surface radio array for Askaryan photons

v-oscillations at IceCube

• Neutrino oscillations

UNIVERSITY OF

- Three flavours $v_{e,\mu,\tau} \nleftrightarrow$ Three mass states $v_{1,2,3}$
- Propagate as flavour superpositions $\Rightarrow \Delta m_{ij} \neq 0$
- Oscillations between flavours $\Rightarrow m(v)_{1,2,3} \neq 0$
- $P(\text{Transition}) \propto f(L/E)$
- Upgoing atmospheric muon neutrinos
 - Abundant & high-*E* source:
 - Accesses oscillations with Q^2 for transition into v_{τ}
 - Maximum ~13,000km baseline, *L*, as $f(\theta_Z)$:
 - Near maximal $(\nu_{\mu} \rightarrow \nu_{\tau})$ oscillations for O(10 GeV)
 - DeepCore optimised for ~25 GeV, sensitive > 5 GeV:
 - Upgrade sensitivity designed for *O*(1 GeV)

ν -oscillations physics

- Unitarity tests
 - 4th generation / heavy neutral leptons
- Non-standard interactions
 - New mediators / enhanced couplings

v_{τ} -appearance

- ν_{τ} -normalization, $N_{\nu_{\tau}} \neq 1 \Rightarrow$ non-unitarity
- Neutrino mass ordering
 - CP violation
 - Majorana fermions

v_{μ} -disappearance

• Mass splitting (Δm_{23}^2) & mixing angle (sin² θ_{23})

UNIVERSITY OF

$U_{PMNS} =$

Mixing angles: $\theta_{12}, \theta_{13}, \theta_{23}$ CP violating complex phase: $\delta \equiv \delta_{CP}$

Beyond unitarity

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \end{pmatrix} = U_{PMNS} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$
$$= \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$

If U is unitary: $U^{\dagger}U = UU^{\dagger} = I$, then norms (magnitude of vector from origin) are preserved, crucial for probability amplitude calculations in QM

- Unitarity tests
 - 4th generation / heavy neutral leptons
- Non-standard interactions
 - New mediators / enhanced couplings
- v_{τ} -appearance
 - v_{τ} -normalization, $N_{v_{\tau}} \neq 1 \Rightarrow$ non-unitarity
- Neutrino mass ordering
 - CP violation
 - Majorana fermions
- v_{μ} -disappearance
 - Mass splitting (Δm_{23}^2) & mixing angle (sin² θ_{23})

Beyond Standard Model

$$\begin{vmatrix} \nu_{e} \\ |\nu_{\mu} \rangle \\ |\nu_{\tau} \rangle \end{pmatrix} = U_{PMNS^{+}} \begin{pmatrix} |\nu_{1} \rangle \\ |\nu_{2} \rangle \\ |\nu_{3} \rangle \end{pmatrix}$$
$$= \begin{pmatrix} U_{PMNS} & \cdots & U_{en} \\ \vdots & \ddots & \vdots \\ U_{f1} & \cdots & U_{fn} \end{pmatrix} \begin{pmatrix} |\nu_{1} \rangle \\ |\nu_{2} \rangle \\ |\nu_{3} \rangle \end{pmatrix}$$

• Unitarity tests

- 4th generation / heavy neutral leptons
- Non-standard interactions
 - New mediators / enhanced couplings

• v_{τ} -appearance

- ν_{τ} -normalization, $N_{\nu_{\tau}} \neq 1 \Rightarrow$ non-unitarity
- Neutrino mass ordering
 - CP violation
 - Majorana fermions
- v_{μ} -disappearance
 - Mass splitting (Δm_{23}^2) & mixing angle (sin² θ_{23})

 $\begin{pmatrix} |\nu_e\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \end{pmatrix} = U_{reality} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$

 $= U_{PMNS} \begin{pmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_2\rangle \end{pmatrix}$

Beyond Standard Model

- Unitarity tests
 - 4th generation / heavy neutral leptons
- Non-standard interactions
 - New mediators / enhanced couplings
- v_{τ} -appearance
 - v_{τ} -normalization, $N_{v_{\tau}} \neq 1 \Rightarrow$ non-unitarity
- Neutrino mass ordering
 - CP violation
 - Majorana fermions
- v_{μ} -disappearance
 - Mass splitting (Δm_{23}^2) & mixing angle (sin² θ_{23})

IceCube oscillogram

• Unitarity tests

- 4th generation / heavy neutral leptons
- Non-standard interactions
 - New mediators / enhanced couplings

v_{τ} -appearance

- ν_{τ} -normalization, $N_{\nu_{\tau}} \neq 1 \Rightarrow$ non-unitarity
- Neutrino mass ordering
 - CP violation
 - Majorana fermions

v_{μ} -disappearance

• Mass splitting (Δm_{23}^2) & mixing angle ($\sin^2 \theta_{23}$)

UNIVERSITY OF

Oscillations with the Upgrade

- **Reconstruction & particle identification**
 - 2x improvement in *E* resolution \supset 3x for τ -appearance
 - 3x improvement in θ_{z} resolution
- **Detection efficiency**

UNIVERSITY OF

- 2x detection efficiency \supset 10x efficiency below 10 GeV
- Overall 2x v_{τ} rate, 3x v_{μ} rate $\Rightarrow v_{atm}$ every 15 mins
- Systematics limited measurements
- **Projections**
 - 1yr \rightarrow world leading ν_{τ} -appearance
 - $3yrs \rightarrow competitive \nu_{\mu}$ -disappearance

DeepCore event energy

• The same simulated 30 GeV $\nu_{\mu} \rightarrow \mu$ -track as viewed by each setup

J V Mead

Upgrade event energy

• The same simulated 3.8 GeV $\nu_{\mu} \rightarrow \mu$ -track as viewed by each setup

J V Mead

ν -oscillations physics

UNIVERSITY OF

UNIVERSITY OF

COPENHAGEN

PeV resonant scattering

Article | Published: 10 March 2021

Detection of a particle shower at the Glashow resonance with IceCube

The IceCube Collaboration

Nature 591, 220–224 (2021) Cite this article

Summary

- Only 3^{rd} IceCube event with E > 5 PeV
- $m_W = 80.38 \ GeV \Rightarrow$ resonance at $E_{\overline{\nu}} = 6.32 \ PeV$
- 5σ within expected W^- resonance width
- Early pulses ahead of cascade imply hadronic *W*-decay
- Likelihood ratio test prefers GR(h) over CC(e) to 2.3 σ
- Suggests presence of $\bar{\nu}$ astrophysical flux

20/05/2021

PeV resonant scattering

COPENHAGEN Astrophysical neutrino production

Letter | Published: 22 February 2021

A concordance scenario for the observed neutrino from a tidal disruption event

Walter Winter 🖂 & Cecilia Lunardini

Nature Astronomy 5, 472-477 (2021) Cite this article

Summary

- Star torn apart by tidal forces of a supermassive black hole
- 50% of the star's mass accreted by the black hole
- Track-like astrophysical neutrino (IceCube-191001A16) associated with known tidal disruption event (AT2019dsg17)
- Indicates such events can accelerate cosmic rays to PeV energies
- Expanding cocoon progressively obscures the X-rays emitted
- Provides target for $p\gamma$ -production of neutrinos

NEWSLETTERS Sign up to read our regular email newsletters

News Podcasts Video Technology Space Physics Health More > Shop Courses Events

We've spotted a neutrino blasted out by a black hole shredding a star

f 💙 🕲 in 🚭 🖓 😨

SPACE 22 February 2021

By Leah Crane

A view of the accretion disc around a supermassive black hole, with jet-like structures flowing away from the disc

Astrophysical neutrino production

Multi-messenger astronomy

HESE 4yr with $E_{dep} > 100$ TeV (green) / Classical $v_{\mu} + \bar{v}_{\mu}$ 6yr with $E_{\mu} > 200$ TeV (red)

UNIVERSITY OF COPENHAGEN

Auger 2014 E \geq 52 EeV (×) / TA 2014 E \geq 57 EeV (+) / smoothed anisotropy map ($\Delta\theta_{50\%}=20^\circ)$

20/08/2021

Conclusions

• Broad programme of astro- and particle physics

- Neutrino oscillations
- Neutrino astrophysics
- Multi-messenger astronomy

• Ongoing projects

- Upgrade is in finalising stages following delay due to pandemic
- Gen-2 development well underway
- Radio extension to be matched in Greenland (RNO-G)
- Opportunities for the future
 - 3 years of Upgrade data expected to exceed 10 year DeepCore precision
 - Gen-2 on track for beginning 2025 installation and first data by 2033
 - Plenty of unanswered questions still out there, neutrino sector is still growing!

Conclusions

20/08/2021

Conclusions

20/08/2021

UNIVERSITY OF COPENHAGEN

$\overline{\nu_e} + e^- \rightarrow W^-$

20/05/2021

