

Standard Model of particle physics

Ricardo González López

Liverpool@CERN Summer School - 16/08/2021

About me

- Hi! I'm Ricardo Gonzalez
- Born in Zaragoza, Spain, where I took undergrad Physics
- Took a master in Advanced Physics in Valencia
- Now a 4th year PhD student at the University of Liverpool
- Working at the ATLAS experiment
 - Precision W and Z boson measurements
 - Pixel tracker upgrade
- Interests: hiking, basketball, videogames

Standard Model of particle physics – What is it?

- It is the theory that best encapsulates our current understanding of the universe:
 - What is it made of?
 - What are the fundamental forces that reign it?

Standard Model of Elementary Particles

Standard Model of particle physics – What is it?

- It is the theory that best encapsulates our current understanding of the universe:
 - What is it made of?
 - What are the fundamental forces that reign it?

Standard Model of Elementary Particles

Standard Model of particle physics – What is it?

- It is the theory that best encapsulates our current understanding of the universe:
 - What is it made of?
 - What are the fundamental forces that reign it?

What is matter made of?

Standard Model of Elementary Particles

Standard Model of Elementary Particles

Fermions

Matter particles

Can further combine into more complex particles (protons, neutrons and a <u>very</u> long etc)

Spin 1/2

- Mathematically described by an antisymmetric function.
- Can't find two identical together→ Pauli exclusion principle

ANTISYMMETRIC

Standard Model of Elementary Particles

Fermions

Bosons

Matter particles

Can further combine into more complex particles (protons, neutrons and a <u>very</u> • long etc)

Spin 1/2

- Mathematically described by an antisymmetric function.
- Can't find two identical together \rightarrow Pauli exclusion principle

ANTISYMMETRIC

Force carriers*

- Particle interactions are • represented by bosons' exchange
 - Higgs is not associated to any force

Integer spin: 0, 1, 2

Mathematically described by an ٠ symmetric function.

Standard Model of Elementary Particles

Standard Model of Elementary Particles

Fermions

Quarks

Massive particles Fractional electric charge Carry colour charge Never observed as free particles

Standard Model of Elementary Particles

Fermions

Quarks

Massive particles Fractional electric charge Carry colour charge Never observed as free particles

Leptons

Don't interact strongly Integer charges Each charged lepton is associated to a neutrallycharged neutrino

Antiparticles

- Every fermion in the Standard Model has its own antiparticle.
- Each antiparticle has the same mass, but opposite charge as its corresponding particle.

You will hear more about antiparticles in Joe's talk tomorrow!

Antiparticles

- Every fermion in the Standard Model has its own antiparticle.
- Each antiparticle has the same mass, but opposite charge as its corresponding particle.

You will hear more about antiparticles in Joe's talk tomorrow!

How do particles interact?

Particle interactions

- Particle interactions are represented by the exchange of force carriers.
- $e^ \overline{\nu}_e$ p^+
- Each carrier is associated to a different force:
 - Photons: electromagnetic force carriers
 - W and Z bosons: weak force carriers
 - Gluons: strong force carriers

Particle interactions

- Particle interactions are represented by the exchange of force carriers.
- Each carrier is associated to a different force:
 - Photons: electromagnetic force carriers
 - W and Z bosons: weak force carriers
 - Gluons: strong force carriers

Particle interactions: electromagnetic force

- Result of the unification of the electric and magnetic forces.
- Occurs between electrically charged particles.
- Carried by massless photons.
- Infinite range.

Electron scattering:

Particle interactions: weak force

- Occurs between all types of particles.
- Mediated by W and Z bosons.
- Short range due to the bosons' mass.
- Responsible for many nuclear decays.

Weak force: beta decays and proposal of the neutrino

- Beta decays are a very well known reaction in nuclear physics.
- When measuring the electron's energy, physicists expected a single value for it. Instead, they observed a continuous spectrum.
- Something that couldn't be measured was taking part of the electron's energy \rightarrow the neutrino!
 - Neutrinos are very special particles and a research field of their own, more on them in Jaiden's talk!

Particle interactions: strong force + colour charge

- Occurs between particles carrying <u>colour</u> <u>charge</u> (quarks and gluons).
- Mediated by gluons.
- Stronger at low energies or high distances, weaker at high energies and small distances:
 - Asymptotic freedom + quark confinement
 - No observation of free quarks and gluons

Strong force: colour charge

- Proposed to explain the existence of particles made of quarks in seemingly the same states.
 - This would violate Pauli exclusion principle.
- Three possible colours: Red, Green and Blue.
 - Antiquarks have anticolours.
- All stable particle combinations found in nature need to be colourless.
- Not related to visible colours.

Mesons and baryons

- Particles composed of quarks are hadrons
- 2-quark particles are known as mesons
- 3-quark particles are known as baryons
- Hadrons must be <u>colourless</u>
 - Only colour-anticolour or RGB combinations are allowed
- In July 2020, LHCb published the observation of a candidate to be the first 4-quark particle ever detected

Force strengths

All values given for a certain energy point

What about the Higgs boson?

- We've talked about (most) bosons present in SM, but missed a really important one.
- Instead of mediating a force, the Higgs boson "grants mass" to all other particles.
- We'll hear more about it tomorrow, together with a recreation of the analysis that led to its discovery (and the 2013 Physics Nobel Prize)

Ricardo González López – Liverpool@CERN Summer School

How do maths explain all* of our Universe?

*most

- \mathcal{L} Lagrangian density
- In classical mechanics, represents the difference between the kinetic and potential energies of a system.
 - Can be used to obtain the equations of motion of a system.
 - For example: springs, slopes...
- In quantum physics, it describes the kinematics of a quantum system.
- These are the rules that will tell us how do our particles behave!

• Describes all interaction particles (all bosons except the Higgs) and how they interact with each other.

• Describes how interaction particles interact with matter (quarks and leptons).

• Describes how matter particles couple to the Higgs field and gain mass.

 h.c. stands for hermitian conjugate. Describes the same interactions as the main terms, but with antimatter particles.

• Describes the Higgs interactions with other bosons and itself.

The Universe in a mug^{*}

* disclaimer: you may actually struggle fitting the whole theory in a mug

Ricardo González López – Liverpool

 $\mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g^a_{\mu} \partial_{\nu} g^a_{\mu} - g_s f^{abc} \partial_{\mu} g^a_{\nu} g^b_{\mu} g^c_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu} M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_{w}(\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}) - \frac{1}{2}\partial_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \frac{1}{2}\partial_{\mu}Z_{\mu}^{0}) - \frac{1}{2}\partial_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\mu}Z_{\mu}^{0}) - \frac{1}{2}\partial_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}) - \frac{1}{2}\partial_{\mu}Z_{\mu}$ $W^+_{\nu}W^-_{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial_{\nu}W^+_{\mu}))$ $igs_w(\partial_
u A_\mu(W^+_\mu W^-_
u - W^+_
u W^-_
u) - A_
u(W^+_\mu \partial_
u W^-_
u - W^-_\mu \partial_
u W^+_
u) + A_\mu(W^+_
u \partial_
u W^-_
u - W^+_
u) + A_\mu(W^+_
u \partial_
u W^-_
u) + A_\mu(W^+_
u - W^+_
u) + A_\mu(W^+_
u) + A_\mu(W^+_\mu) + A_\mu$ $W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})) - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\mu}W^{-}_{\nu} + g^{2}c^{2}_{w}(Z^{0}_{\mu}W^{+}_{\mu}Z^{0}_{\nu}W^{-}_{\nu} - G^{0}_{\mu}W^{+}_{\mu}W^{-}_{\nu}))$ $Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) + g^2 s^2_w (A_{\mu}W^+_{\mu}A_{\nu}W^-_{\nu} - A_{\mu}A_{\mu}W^+_{\nu}W^-_{\nu}) + g^2 s_w c_w (A_{\mu}Z^0_{\nu}(W^+_{\mu}W^-_{\nu} W_{\nu}^{+}W_{\mu}^{-}) - 2\dot{A}_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - 2M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} -$ $\beta_h \left(\frac{2M^2}{a^2} + \frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) \right) + \frac{2M^4}{a^2}\alpha_h$ $q\alpha_{h}M(H^{3}+H\phi^{0}\phi^{0}+2H\phi^{+}\phi^{-})$ - $\frac{1}{s}g^2\alpha_h\left(H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2\right)$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H \frac{1}{2}iq\left(W^+_{\mu}(\phi^0\partial_{\mu}\phi^--\phi^-\partial_{\mu}\phi^0)-W^-_{\mu}(\phi^0\partial_{\mu}\phi^+-\phi^+\partial_{\mu}\phi^0)\right)+$ $\frac{1}{2}g\left(W^+_{\mu}(H\partial_{\mu}\phi^- - \phi^-\partial_{\mu}H) + W^-_{\mu}(H\partial_{\mu}\phi^+ - \phi^+\partial_{\mu}H)\right) + \frac{1}{2}g\frac{1}{c}\left(Z^0_{\mu}(H\partial_{\mu}\phi^0 - \phi^0\partial_{\mu}H) + W^-_{\mu}(H\partial_{\mu}\phi^- - \phi^+\partial_{\mu}H)\right) + \frac{1}{2}g\frac{1}{c}\left(Z^0_{\mu}(H\partial_{\mu}\phi^0 - \phi^0\partial_{\mu}H) + W^-_{\mu}(H\partial_{\mu}\phi^- - \phi^+\partial_{\mu}H)\right) + \frac{1}{2}g\frac{1}{c}\left(Z^0_{\mu}(H\partial_{\mu}\phi^0 - \phi^0\partial_{\mu}H) + W^-_{\mu}(H\partial_{\mu}\phi^- - \phi^+\partial_{\mu}H)\right)$ $M\left(\tfrac{1}{c_w}Z_{\mu}^{0}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{s_{w}^{2}}{c_w}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_wMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_WMA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_WMA_{\mu}(W_{\mu}^{+}\phi^{-})$ $W^-_\mu\phi^+) - igrac{1-2c^2_w}{2c_-}Z^0_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) + igs_wA_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) - igs_wA_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) - igs_wA_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) - igs_wA_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) + igs_wA_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) - igs_wA_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) + igs_wA_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) - igs_wA_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) + igs_wA_\mu(\phi^-\partial_\mu\phi^- - \phi^-\partial_\mu\phi^-) + igs_wA_\mu(\phi^-\partial_\mu\phi^- - igs_wA_\mu(\phi^-\partial_\mu\phi^- - \phi^-\partial_\mu\phi^-) + igs_wA_\mu(\phi^-\partial_\mu\phi^-) + igs_wA_\mu(\phi^-\partial_\mu\phi^-) + igs_wA_\mu(\phi^-\partial_\mu\phi^-) + igs_wA_\mu(\phi^-\partial_\mu\phi^-) + igs_wA_\mu(\phi^-\partial_\mu\phi^-) + igs_wA_\mu(\phi^ \frac{1}{4}g^2 W^{\mu}_{\mu} W^{-}_{\mu} (H^2 + (\phi^0)^2 + 2\phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c_w^2} Z^0_{\mu} Z^0_{\mu} (H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+ \phi^-) \frac{1}{2}g^2\frac{s_w^2}{c_w}Z_{\mu}^0\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) - \frac{1}{2}ig^2\frac{s_w^2}{c_w}Z_{\mu}^0H(W_{\mu}^+\phi^--W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^-\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^ W_{\mu}^{\mu\nu}(m_{\mu}\phi) + \frac{1}{2}ig^2s_wA_{\mu}H(W_{\mu}^{\mu}\phi^- - W_{\mu}^{\mu}\phi^+) - g^2\frac{s_w}{c_w}(2c_w^2 - 1)Z_{\mu}^0A_{\mu}\phi^+\phi^- - M_{\mu}^0\phi^+)$ $g^2 s^2_w A_\mu A_\mu \phi^+ \phi^- + rac{1}{2} i g_s \lambda^a_{ij} (ar q^\sigma_i \gamma^\mu q^\sigma_j) g^a_\mu - ar e^\lambda (\gamma \partial + m^\lambda_e) ar e^\lambda - ar
u^\lambda (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_i (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_\mu (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_\mu (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_\mu (\gamma \partial + m^\lambda_\mu) ar u^\lambda_i - ar u^\lambda_\mu (\gamma \partial + m^\lambda_\mu) ar u^\lambda_\mu - ar u^\lambda_\mu (\gamma \partial + m^\lambda_\mu)$ $\bar{m}_{u}^{\lambda}u_{i}^{\lambda}-ar{d}_{i}^{\lambda}(\gamma\partial+m_{d}^{\lambda})d_{i}^{\lambda}+igs_{w}A_{\mu}\left(-(ar{e}^{\lambda}\gamma^{\mu}e^{\lambda})+rac{2}{3}(ar{u}_{j}^{\lambda}\gamma^{\mu}u_{j}^{\lambda})-rac{1}{3}(ar{d}_{j}^{\lambda}\gamma^{\mu}d_{j}^{\lambda})
ight)+$ $\frac{ig}{4c_{w}}Z_{\mu}^{0}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{d}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})d_{i}^{\lambda})+$ $(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{i}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}{}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{i}^{\kappa})\right)+$ $\frac{ig}{2\sqrt{2}}W^{-}_{\mu}\left(\left(\bar{e}^{\kappa}U^{lep}{}^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}\right)+\left(\bar{d}^{\kappa}_{j}C^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})u^{\lambda}_{j}\right)\right)+$ $\frac{ig}{2M_{\star}/2}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa})+\right.$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{g}{2}\frac{m_{e}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\nu}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{e}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}\,M_{\lambda\kappa}^{R}\,(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{1}{4}\bar{\nu}_{\lambda}\,M_{\lambda\kappa}^{R}\,(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{1}{4}\bar{\nu}_{\lambda}\,M_{\lambda\kappa}^{R}\,(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{1}{4}\bar{\nu}_{\kappa}\,M_{\kappa}^{R}\,(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{1}{4}\bar{\nu}_{\kappa}\,M_{\kappa}^{R}\,(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{1}{4}\bar{\nu}_{\kappa}\,M_{\kappa}^{R}\,(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{1}{4}\bar{\nu}_{\kappa}\,M_{\kappa}\,M_{\kappa}\,M_{\kappa}\,(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{1}{4}\bar{\nu}_{\kappa}\,M_{\kappa$ $\frac{1}{4}\overline{\nu_{\lambda}}\frac{M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa}}{m_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa}} + \frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})\right) + \frac{ig}{4}\overline{\nu_{\lambda}}\frac{M_{\lambda\kappa}^{R}(1-\gamma_{5})}{m_{\mu}^{2}}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})\right)$ $\tfrac{ig}{2M\sqrt{2}}\phi^{-}\left(m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})-m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}\right)-\tfrac{g}{2}\tfrac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda}) \frac{g}{2}\frac{m_{\dot{a}}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2}\frac{m_{\dot{a}}^{\lambda}}{M}\phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) - \frac{ig}{2}\frac{m_{\dot{a}}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} +$ $\bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - M^{2})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - M^{2})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - M^{2})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - M^{2})X^{0} + \bar{X}^{0}(\partial^{2} - M^{2})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - M^{2})X^{0} + \bar{X}^{0}(\partial^{2} - M^{2})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - M^{2})X^{0} + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - M^{2})X^{0} + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - M^{2})X^{0} + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - M^{2})X^{0} + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} + igc_{w}W^{+}_{\mu}(\partial_{\mu}$ $\partial_{\mu}\bar{X}^{+}X^{0})+igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}-\partial_{\mu}\bar{X}^{+}\ddot{Y})+igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} \partial_\mu ar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu ar{X}^- Y - \partial_\mu ar{Y} X^+) + igc_w Z^{ar{0}}_\mu (\partial_\mu ar{X}^+ X^+ \partial_\mu ar{X}^- X^-) + igs_w A_\mu (\partial_\mu ar{X}^+ X^+ \partial_{\mu} \bar{X}^{-} X^{-}) - rac{1}{2} g M \left(\bar{X}^{+} X^{+} H + \bar{X}^{-} X^{-} H + rac{1}{c_{x}^{2}} \bar{X}^{0} X^{0} H
ight) + rac{1 - 2c_{w}^{2}}{2c_{w}} i g M \left(\bar{X}^{+} X^{0} \phi^{+} - \bar{X}^{-} X^{0} \phi^{-}
ight) +$ $\frac{1}{2c_w} igM \left(ar{X}^0 X^- \phi^+ - ar{X}^0 X^+ \phi^-
ight) + igMs_w \left(ar{X}^0 X^- \phi^+ - ar{X}^0 X^+ \phi^-
ight) +$ $\frac{1}{2}igM\left(\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}\right)$.

- Standard Model is the main theory that describes all known particles and the way they interact.
- Although it was proposed many years ago, it still provides amazing predictions that very well describe our observations in many different experiments.
- However, we do know there's things that fails to explain:
 - Gravity

. . .

- Dark matter and dark energy
- Matter-antimatter asymmetry

• Stay tuned for Matt's talk to hear more about some of these mysteries! Ricardo González López – Liverpool@CERN Summer School

Thanks for your attention!

Further reading

- J. Woithe, G. Wiener, F. Van der Veken, "Let's have a coffee with Standard Model"
 - https://iopscience.iop.org/article/10.1088/1361-6552/aa5b25/pdf
- R. Oerter (2006). The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics
- "Standard Model of Particles and Interactions" Summary poster
 - https://web.archive.org/web/20160304133522/https://www.pha.jhu. edu/~dfehling/particle.gif

