



# ROOT Workshop Tutorial ATLAS Open Data

## **Higgs Discovery**

**Ricardo González López** 

Liverpool@CERN Summer School - 17/08/2021

#### Preparation

- Load Open Data kernel:
  - https://github.com/atlas-outreach-data-tools/notebooks-collection-ope ndata

#### **ATLAS Open Data**

#### notebooks-collection-opendata

A set of multiple notebooks using 8 TeV and 13 TeV ATLAS Open Data datasets

To execute in MyBinder Slaunch binder

Note: before starting running the code in the jupyter notebooks, click on the up right button "not trusted" in order to get "trusted" displayed. This should lead the JavaScript to be executed, that is useful to visualise interactive histograms. If that doesn't work, simply go to the top of the notebook, find the cell that contains the line of code %jsroot and comment out that.

For more, please go to: http://opendata.atlas.cern

@2021



#### Preparation

- Load Open Data kernel:
  - https://github.com/atlas-outreach-data-tools/notebooks-collection-ope ndata



Starting repository: atlas-outreach-data-tools/notebookscollection-opendata/master

Read our advice for speeding up your Binder launch.



## Flashback: What about the Higgs boson?



- Bosons in SM were presented yesterday. While most act as force mediators, Higgs stands on its own.
- Instead of mediating a force, the Higgs boson "grants mass" to all other particles.
  - How does this work?





Ricardo González López – Liverpool@CERN Summer School

## Mass in quantum mechanics – Why do we need the Higgs?

- In Quantum Field Theory the mass of a particle is represented as its coupling with itself
- However, these terms would be nonsymmetric in SM
  - We want our theory to be independent of shifts and rotations
- Solution: introduce self interactions via Higgs





- You can think of the Higgs field as a snowfield.
- The particles need to cross the field, but there's different ways to do so...





- You can think of the Higgs field as a snowfield.
- The particles need to cross the field, but there's different ways to do so...





- You can think of the Higgs field as a snowfield.
- The particles need to cross the field, but there's different ways to do so...





- You can think of the Higgs field as a snowfield.
- The particles need to cross the field, but there's different ways to do so...





- You can think of the Higgs field as a snowfield.
- The particles need to cross the field, but there's different ways to do so...





- You can think of the Higgs field as a snowfield.
- The particles need to cross the field, but there's different ways to do so...
- The snowflakes that make up this snowfield are the Higgs boson!





- The stronger these particles interact with the Higgs field/bosons, the higher their mass is.
- Note how mass range covers 5 orders of magnitude:
  - $M_{_{top}} = 172 \text{ GeV}$
  - $M_{_{ele}} = 0.5 \text{ MeV}$
  - Similar to comparing a bear with an ant!





## The Universe in a mug

• Describes how matter particles couple to the Higgs field and gain mass.







## The Universe in a mug

• Describes the Higgs interactions with other bosons and itself.







## But... how do we find the Higgs boson?



## The Higgs discovery

- Particle physics discoveries depend on contrasting expectations and reality.
- If you expect X events for a given process and you find an excess, something must be causing those extra events!
- At LHC, an excess in the γγ channel was found, compatible with the Higgs boson predictions.

#### Summer EXPECTATIONS



REALITY





## The Higgs discovery

- Particle physics discoveries depend on contrasting expectations and reality.
- If you expect X events for a given process and you find an excess, something must be causing those extra events!
- At LHC, an excess in the γγ channel was found, compatible with the Higgs boson predictions.





## The Higgs discovery

- Particle physics discoveries depend on contrasting expectations and reality.
- If you expect X events for a given process and you find an excess, something must be causing those extra events!
- At LHC, an excess in the γγ channel was found, compatible with the Higgs boson predictions.

#### From: https://arxiv.org/abs/1207.7235





### Particle discovery: background and signal

- Events observed at particle physics analysis are mainly divided into background and signal.
  - Background: events coming from processes you're not interested in.
  - Signal: events coming from the main process you want to study.



Purple: events coming from background
Z, W, photons, electrons and many
more can also decay into γγ!
Grey: events coming from bkg+signal

May not look like much at first sight, but it's a  $\sim$ 300 events excess!

#### Particle discovery: background and signal

- Z, W, photons, electrons and many more can also decay into  $\gamma\gamma!$ 
  - How do we find excesses?
- When using photons, there's several things we can use to exclude non-relevant events:



Photon ID: is our "photon" really a photon? Photon momentum  $(p_T)$ : the energy of our candidate.

Isolation: many particles are produced at LHC, we don't want our event to be contaminated!

Eta: the position of the photon in the detector.

When applying certain requirements (cuts) on these, we favour the appearance of signal events!



## Back to programming!



- Load Open Data kernel: ullet
  - https://github.com/atlas-outreach-data-to ols/notebooks-collection-opendata

| 💭 Jupyter                                | 💭 Jupyter                                |
|------------------------------------------|------------------------------------------|
| Files Running IPython Clusters           | Files Running IPython Clus               |
| Select items to perform actions on them. | Select items to perform actions on them. |
|                                          | 0 - 13-TeV-examples                      |
| C 13-TeV-examples                        |                                          |
| 8-TeV-examples                           |                                          |
| images                                   | С Срр                                    |
| environment.yml                          | python                                   |
| README.md                                | uproot_python                            |
|                                          |                                          |

#### 🗂 Jupyter





Ricardo González López – Liverpool@CERN Summer School

**IPvthon Clusters** 

- You will be taken to a jupyter notebook: interactive environment to run (python) code.
- Content is divided in cells, you can run a cell using the buttons on top of the page.
  - Content can be an image, text, code...
  - When running a cell that has no code it will skip to the next one.
     Code may take seconds, minutes, hours... depending on the function of the code.



• Key parts of the code: lumi, fraction and data

#### Lumi, fraction, file path

General definitions of luminosity, fraction of data used, where to access the input files

lumi = 0.5 # fb-1 # data\_A only #lumi = 1.9 # fb-1 # data\_B only #lumi = 2.9 # fb-1 # data\_C only #lumi = 4.7 # fb-1 # data\_D only #lumi = 10 # fb-1 # data\_A, data\_B, data\_C, data\_D fraction = 0.2 # reduce this is you want the code to run quicker #tuple\_path = "Input/GamGam/Data/" # local tuple\_path = "https://atlas-opendata.web.cern.ch/atlas-opendata/samples/2020/GamGam/Data/"

Lumi stands for luminosity, a quantity we use to account for how much data we collect.

Lumi needs to match the samples we use: when changing samples\_list, we need to change lumi as well!

#### Samples

Samples to process

samples\_list = ['data\_A'] #'data\_B','data\_C','data\_D' # add if you want more data

#### X AILAS EXPERIMENT

• Key parts of the code: lumi, fraction and data

#### Lumi, fraction, file path

General definitions of luminosity, fraction of data used, where to access the input files

lumi = 0.5 # fb-1 # data\_A only
#lumi = 1.9 # fb-1 # data\_B only
#lumi = 2.9 # fb-1 # data\_C only
#lumi = 10 # fb-1 # data\_D only
#lumi = 10 # fb-1 # data\_A, data\_B, data\_C, data\_D
fraction = 0.2 # reduce this is you want the code to run quicker
#tuple\_path = "Input/GamGam/Data/" # local
tuple\_path = "https://atlas-opendata.web.cern.ch/atlas-opendata/samples/2020/GamGam/Data/"

0.2 will use 20%, etc...

Fraction represents the

#### Samples

Samples to process

samples\_list = ['data\_A'] #'data\_B','data\_C','data\_D' # add if you want more data

#### X AI LAS

• Key parts of the code: lumi, fraction and data

#### Lumi, fraction, file path

General definitions of luminosity, fraction of data used, where to access the input files

lumi = 0.5 # fb-1 # data\_A only
#lumi = 1.9 # fb-1 # data\_B only
#lumi = 2.9 # fb-1 # data\_C only
#lumi = 4.7 # fb-1 # data\_D only
#lumi = 10 # fb-1 # data\_A, data\_B, data\_C, data\_D
fraction = 0.2 # reduce this is you want the code to run quicker
#tuple\_path = "Input/GamGam/Data/" # local
tuple\_path = "https://atlas-opendata.web.cern.ch/atlas-opendata/samples/2020/GamGam/Data/"

tuple\_path tells the code where to look for the data.

```
Data is divided in different
subsets (A to D), we can
select which to use using
samples_list
Remember to change
lumi accordingly!
```

#### Samples

Samples to process



• Key parts of the code: cuts

# Cut on photon reconstruction quality
# paper: "Photon candidates are required to pass identification crit
def cut\_photon\_reconstruction(photon\_isTightID):
# isTightID==True means a photon identified as being well reconstruct
# wort to keep curves there True for both photons

# want to keep events where True for both photons
# first photon is [0], 2nd photon is [1] etc

return photon\_isTightID[0]==True and photon\_isTightID[1]==True

# Cut on Transverse momentum

# paper: "The leading (sub-leading) photon candidate is required to
def cut\_photon\_pt(photon\_pt):

# want to keep events where photon\_pt[0]>40000 MeV and photon\_pt[1]>,
return photon\_pt[0]>40000 and photon\_pt[1]>30000

# Cut on energy isolation
# paper: "Photon candidates are required to have an isolation transv
def cut\_isolation\_et(photon\_etcone20):

# want to keep events where isolation eT<4000 MeV
return photon etcone20[0]<4000 and photon etcone20[1]<4000</pre>

# Cut on pseudorapidity in barrel/end-cap transition region # paper: "excluding the calorimeter barrel/end-cap transition region def cut\_photon\_eta\_transition(photon\_eta):

# want to keep events where modulus of photon\_eta is outside the ran return (abs(photon\_eta[0])>1.52 or abs(photon\_eta[0])<1.37) and</pre>

Photon ID: is our "photon" really a photon? Photon momentum  $(p_T)$ : the energy of our candidate.

Isolation: many particles are produced at LHC, we don't want our event to be contaminated!

Eta: the position of the photon in the detector.

You can test the effects of lowering/removing these cuts!



• Key parts of the code: running on data + plotting

```
start = time.time() # time at start of whole processing
data = get_data_from_files() # process all files
elapsed = time.time() - start # time after whole processing
print("Time taken: "+str(round(elapsed,1))+"s") # print total
```



Other lines only define variables/functions. This will actually run on data, so this will take the longest (depending on the value of fraction)

This will plot the final result. plot\_data is defined in the previous cell, no need to change that one!

## Your turn!

- So far we've only repeated what was done in the original analysis, but there's things you can test:
  - What's the effect of the cuts?
  - What if you add more data?
- Many more analysis to test!

