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Templates: a problem
● To do statistical inference with noble 

element detectors, we want to 
evaluate the likelihood

● Build detector response model to 
signal/background sources to do this

● Traditionally, likelihood evaluation 
done by approximating event 
probabilities with Monte Carlo 
templates in observable space

● This is okay if done per source in the 
space of 2 observables and with all 
nuisance parameters fixed
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Templates: a problem

● Signal/background discrimination 
better at the top of the detector

● So rather than normalising signals to 
some fixed vertical position, better to 
include vertical position as an 
additional observable

● This means generating templates 
finely binned in this new coordinate

template for each 
vertical TPC 
position 
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Templates: a problem template for each 
vertical TPC 
position 

template stack 
for each electron 
lifetime ● What if we have 

some uncertainty in 
the electron lifetime

● We should include it 
as a nuisance 
parameter

● Now we are 
generating a stack 
of templates for a 
large number of 
electron lifetimes
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Template construction scales exponentially

Template space 
dimensionality

(S1,S2) + z + r + t + n1 + 
n2 + ...

z-dependence of 
(S1,S2)

r-dependence of 
energy 
deposition

z-dependence of 
electric field

...

r-dependence of 
electric field

...

t-dependence of 
electron lifetime

t-dependence of 
energy 
deposition

...

uncertainty in electron 
lifetime: nuisance 
parameter n1

uncertainty in g1: 
nuisance parameter n2

...

...
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Evaluating likelihoods directly

● Consider a simple model where some 
energy deposition E leads to some 
detected signal S via these processes - 
hidden variables a,b, nuisance 
parameters n1,n2,...

● To evaluate P(S|E) via template filling, 
we would have to do MC simulation via 
these distributions, repeated over all ni

● More direct way: perform the 
convolution of probability elements 
directly. Can represent this as a matrix 
multiplication

● This means you do a single calculation 
to evaluate the likelihood for some 
observed S, and given set of ni
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FLAMEDISX

J Aalbers et al., Phys. Rev. 
D 102, 072010 (2020)

● FLAMEDISX (2020) aimed to 
implement a full detector response 
model for liquid xenon TPCs in this 
way

● Computation done in TensorFlow: 
GPU-accelerated, easy Hessian 
computation via automatic 
differentiation

● Problems: models tailored to 
XENON1T response, not easily 
extensible (bounds computation!), 
tensors too big for high energy 
events

Computing the range of hidden 
variables for each tensor (bounds 
computation) was semi-analytic 
and model-dependent
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.072010
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.072010


Our work: FlameNEST

● NEST is the state-of-the-art for Monte 
Carlo noble element yield physics, 
contains very good models for 
detector response

● Applicable across a wide range of 
energies and electric fields

● Extensible beyond liquid xenon 
(gaseous xenon, solid xenon, liquid 
argon models currently implemented)

● We created a new FLAMEDISX 
framework which entirely captures the 
NEST models: FlameNEST

energy -> 
electron/photon yields 

photon yield - > S1 
detector response

electron yield - > S2 
detector response
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https://nest.physics.ucdavis.edu


Necessary modifications to core framework

x3 

Bayes bounds (slides) Variable stepping (slides)

Obtain tensor bounds for a block’s “in” 
dimension by constructing posterior PDF using 
bounds for “out” dimension, evaluated over a 
range of “in” values.

Enable extension to higher energy sources by 
scaling probability elements evaluated at 
stepped hidden variable values, enabling 
smaller tensor construction. 
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https://docs.google.com/presentation/d/1Fr-_AQB__oQiLIyqbk3XxSAIWpivbzK7OnKqnoOWspM/edit#slide=id.p
https://docs.google.com/presentation/d/1b4xh2-nUhBhnscXNoUEcthufW74W4wGHXgzD52QBe4Q/edit#slide=id.p


Validations
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1 keV 100 keV

Methodology

● Fill S1/S2 histograms for 
sources at fixed (x,y,z,t) 
using NEST

● Count events in each bin - 
‘MC differential rate’

● Compute expected events at 
the bin’s central (S1,S2) and 
the fixed (x,y,z,t) via 
FlameNEST - ‘FlameNEST 
differential rate’

● Check they agree within 
statistical + binning errors 
from the MC



Outlook
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● Publication in progress on the structure of the FlameNEST tensor structure 
and new computational features enabling it

● A little more work remaining to address certain nuances with doing the 
computation for general energy spectra

● Code will all be publicly available on the FLAMEDISX GitHub repository: link

● Looking forward to working with the noble element community to allow 
FlameNEST to be used for experiments extending beyond liquid xenon 
TPCs 

https://github.com/FlamTeam/flamedisx

