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- 3.3𝜎 significance between SM and 
the latest experimental result.

- Confirmed the BNL result (0.6σ).

- Combined experimental average at 
4.2σ tension with SM from theory 
initiative.

- Statistical uncertainties dominate 
the experimental average result.

- Run-1 data is only 6% of the target 
statistics… More to come.

𝒂𝝁 Overview: Run-1 Results



Standard
Model 𝒂𝝁𝑺𝑴

*From Muon g-2 Theory Initiative: Phys. Rep. 887, 1 (2020). 3

𝒂𝝁 Overview: 𝒂𝝁 from SM



- 1956: Lee and Yang à Parity violation in weak decays would provide a way to measure the muon magnetic moment. 

*Assume 𝜋’s, 𝜇’s, and 𝑒’s are positively charged, unless indicated otherwise.

𝜋 𝜇𝜈

𝑒 : Higher-energy positrons

Pion decay 
𝜋! → 𝜇!𝜈"

Muon decay
𝜇! → 𝑒!𝜈#𝜈̅"

In Rest Frame:

- In lab frame forward/backward muons from pion decay still highly polarized.

- From the parity-violating muon decay 𝜇! → 𝑒!𝜈#𝜈̅", highest energy positrons are emitted in the muon spin 
direction with a probability proportional to the angle between these two directions. 

𝜇𝑒
𝑒 𝑒

𝑒 𝑒
𝑒𝑒

𝑒𝜇𝜇𝜇𝜇𝜇𝜇𝜇

(𝒔: spin, 𝒑:momentum)
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𝒂𝝁 Overview: Experimental technique
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Purpose of the Muon g-2 Storage Ring
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: Higher-energy positrons𝑒

Lab Frame

𝜇

𝑒
𝑒
𝑒

𝜇𝜇𝜇𝜇𝜇𝜇𝜇

𝜇
𝑒 𝑒

𝑒 𝑒
𝑒𝑒
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Lab Frame

𝜔$: Spin precession frequency relative to the 
momentum direction of muons in the of the 
storage ring

𝑁 𝑡, 𝐸%& ≈ 𝑁' 𝐸%& exp(%/*+! 1 + 𝐴(𝐸,-) cos 𝜔$𝑡 + 𝜑'(𝐸%&)

𝜔$= 𝜔% −𝜔& = − '
(!
𝑎) &𝐵

momentum
spin

muon bunch

𝑒

- Purpose: To provide ~3GeV positrons 
out of muon beam decay for 
calorimetry.
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Purpose of the Muon g-2 Storage Ring

- The ring is designed to allow a highly precise measurement of the muon anomalous magnetic moment anomaly 
𝑎" ≡ (𝑔" − 2)/2 (Δ𝑎"/𝑎" ≤ 140 ppb): 

Main measurements:

- 𝜔$: The “anomalous precession frequency”

- O𝜔′.: Proton Larmor frequency measured in a spherical water 

sample, weighted by the muon distribution 𝐵 = ℏ0"
1""

.
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Ring parameters

Ring Parameter Value*
Nominal momentum 3.094 GeV/c

Momentum acceptance ±0.56%
Horizontal tune 0.944

Vertical tune 0.330
Bending magnetic field 1.4512991 T

Bending radius 7.112 m
Revolution period 149.2 ns

𝛽! [7.4,7.7] m
𝛽" [21,22] m
𝐷! [7.9,8.1] m

Horizontal admittance 268 π mm.mrad
Vertical admittance 93 π mm.mrad
Maximum excursion 45 mm

x’ max 6 mrad
y’ max 2 mrad

Focusing plates voltage ~18.3 kV
Vacuum in storage volume ≲1.5E-6 Torr

Current 5170 A

*Representative values

- Temporal stability and spatial homogeneity of the magnetic guide field are essential to the experiment.

- Average magnetic field experienced by stored muons needs to remain stable on the scale of ppm.  
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Main magnet
Oct 2015 Aug 2016

- Magnet shimming keeps the field highly uniform (local variations <50 ppm).

- Passive shimming:
- Pole pieces positioning drives the overall field strength.
- Additional pieces of iron fine-tune azimuthally averaged field and 

control transverse gradients.

- Active shimming:
- Surface coils target specific azimuthally averaged multipole 

gradients.
- Power supply feedback adjusts supply current to keep the average 

vertical field constant over time. 
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Magnetic field measurement (i.e., #𝜔ST )
<latexit sha1_base64="KavhGwAvhL7I+azcsEdFZPCXMy8=">AAAC8HicpVLLahsxFNVMH0ndl9MuuxE1hWRjZkJouymEdJNlCnGSErlGI9+xRSTNIN0JNUJk2/xBdqXb/lF/oD/QH6jsDCWxs+sFweGco3OlKxW1kg6z7FeS3rv/4OHa+qPO4ydPnz3vbrw4clVjBQxEpSp7UnAHShoYoEQFJ7UFrgsFx8XZx7l+fA7Wycoc4qyGoeYTI0spOEZq1P3DUKox+L3wgZWWC8+mBbeUIXzFRbovVAPBtzZWaZjwMPJ1+OJZbaWGsHm4FYLfpkw3K/z/hgbaBsyzI7u/FfxdfW7bwk1/K+X/yDDq9rJ+tii6CvIW9EhbB6PubzauRKPBoFDcudM8q3HouUUpFIQOaxzUXJzxCZxGaLgGN/SLmwb6JjJjWlY2LoN0wd7c4bl2bqaL6NQcp25Zm5N3aoIbAWqpO5bvh16aukEw4rp52SiKFZ2/Ph1LCwLVLAIurIznp2LK43ww/pFOHEy+PIZVcLTdz9/2dz7t9Hb32hGtk1fkNdkkOXlHdsk+OSADIpLPyUXyLblMbXqVfk9/XFvTpN3zktyq9OdfkR32SQ==</latexit>

B̃ =
~!̃0

p(T )

2µ0
p(T )

=
~!̃0

p(T )

2

µe(H)

µ0
p(T )

µe

µe(H)

1

µe

Known to ~10 ppb precision 

NMR probe 
calibration factor

Muon beam 
distribution Correction from 

beam injection 
system

Correction from beam 
focusing system

Larmor 
frequency from 

proton NMR
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Magnetic field measurement

Field tracking between trolley runs 
is continuously tracked by 378 
fixed NMR probes located 
throughout the ring.

Field in storage region mapped out 
by NMR trolley every ~3 days.

- Systematic effects associated with field 
mapping:

- Position uncertainties (~5-25 ppb*)
- Motion effects (~5-25 ppb)
- Temperature effects (~5-25 ppb)
- Configurations (<22 ppb)

- Systematic effects associated with field 
tracking, from tracking offsets for all 
fixed probe stations (~20-40 ppb).

*Systematic errors representative of Run-1.
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Magnetic field, beam-weighted

- 2D mapping of the field is described as a multipole expansion:

- Local variations of radial and azimuthal fields (typically <100 ppm of 
main field) lead to (𝐵 − 𝐵2)/𝐵=𝑂(10 ppb).

- The weighting simplifies to combining normal/skew terms in field 
expansion (𝑐3, 𝑠3) with beam’s multipole normal/skew projections 
(𝐼3, 𝐽3) along azimuth:

𝜔!" (𝑥, 𝑦, 𝜙) 𝑀(𝑥, 𝑦, 𝜙)

x
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Muon beam production

16 shots / 1.4 s

- 10Z[ protons per pulse (~8.89GeV) hit 
the production target.

- From parity violation in 𝜋\ → 𝜇\𝜈]
decays, muons are highly polarized.

- Fermilab’s Muon Campus beamlines 
transport ~3.1 GeV/c muons to storage 
ring.

- Muon beam is purified in Delivery Ring.



13

Muon beam injection

𝜇𝜇
𝜇𝜇𝜇

B(t)

Inflector magnet

Injection kickers
- Inflector magnet 

cancels the main 
focusing magnetic 
field (1.5 T) to inject 
the bunch directly.

- Injection kickers aim to 
align muons with storage 
region.

- Fast kicker pulses impedance mismatch induces eddy 
currents.

- Faraday magnetometer using fibers measured the kicker 
transient field (laser polarization rotates in TGG crystal in 
presence of the magnetic field).

Kicker transient field

𝐵4 = −27 37 ppb for Run-1
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Muon beam injection

- Imperfect injection kick creates 
beam’s radial centroid oscillation (aka 
“Coherent Betatron Oscillation” CBO).

𝑓567 = 𝑓5 1 − 𝑄8 ≈ 0.37 MHz

- Optics mismatch between injected 
beam and ring produces beam’s radial 
width oscillation.

- Beam’s transverse profile is measured with gaseous straw tracking detector:
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Muon beam vertical confinement
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𝜇

Quad plates mechanical vibration

- The ESQ plates are pulsed at 100 Hz.
- Mechanical vibrations induce a magnetic 

field transient in the storage region.

- The ElectroStatic Quadrupole system (ESQ) provides vertical focusing.

- The ESQ plates are mis-powered for closed orbit distortions.

𝐵9 = −17 92 ppb for Run-1
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Optical lattice
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- Weak-focusing modelling provides 1st order ring representation:
5 μs

30 μs

300 μs

5 μs 30 μs 300 μs

Run 1a
Run 1b
Run 1c
Run 1d

- Beam stability is provided by 
relatively weak focusing:

- Field index n from ESQ system:

,
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Nonlinearities
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Higher-order V

- Geometry of plates introduces 
nonlinearities.
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 Simulation
Data: Run I, Fermilab Muon                  g-2                    

- 3𝑄2 = 1 resonance near operation setpoint. Main 
driving term from magnetic skew sextupole.

- Beam decoherence (𝜏 ≈ 190 µs) driven by electric 
20-pole.
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Beam dynamics systematic effects
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,

Nonnegligible when:
- Muon beam has nonzero momentum spread (𝐶#). [489(53) ppb]
- Muons exhibit vertical oscillations (𝐶.). [180(13) ppb]

Nonnegligible when:
- Muon collimation changes overall phase (𝐶:;). [-11(5) ppb]
- Muon beam drifts during measurement (𝐶.$). [-158(75) ppb]
- Momentum-dependent beam decay changes phase (𝐶<<).

𝜔$= 𝜔$: 1 + 𝐶# + 𝐶. + 𝐶:; + 𝐶<< + 𝐶.$

Phase-Acceptance correction

Muon loss correctionPitch correction

E-field correction

Differential decay correction
*In red, Run-1 values.
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𝐶= = −
𝑛𝛽1

1 − 𝑛 2 𝛿
1 ≈ −480 ppb

Calo

Higher Mom (Lower Freq)
Lower Mom (High Freq)

- Fast signal of muons population seen by Muon g-2
calorimeter system builds from cyclotron 
frequencies distribution.

- Beam’s momentum spread is measured from 
cyclotron frequencies distribution.

Beam dynamics systematic effects: E-field correction

- Systematic error 
dominated by correlation 
between momentum and 
time-of-flights (~50 ppb):

- With realistic tracking 
simulations, 𝐶= standard 
expression is validated.



𝑠
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Beam dynamics systematic effects: Pitch correction

𝜔$ ≈ 1.44 rad/µs, 𝜔% ≈ 13.8 rad/µs

𝑦 𝐴!

Vertical position Betatron amplitude

- Systematic errors dominated by tracking reconstruction and quadrupole calibration.

𝐶. = 180 ppb, 𝛿𝐶. = 13 ppb for Run-1
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Beam dynamics systematic effects: Muon loss correction
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𝐶:; = −11 5 ppb for Run-1

- Bias from phase-momentum correlation and momentum-dependent muon loss: 

- Muon loss greatly 
reduced in posterior 
Runs.

- Differential decay 
correction follows same 
principles.
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Beam dynamics systematic effects: Phase-Acceptance correction
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- Unstable transverse motion of muon beam, detection acceptance, and spatial dependence of phase bias 𝜔$: 

𝐶.$ = −158 75 ppb for Run-1
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Beam dynamics systematic effects: 𝝎𝒂 and CBO
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- Beam betatron motion and detector acceptance introduce 
additional oscillations in positron histogram.
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Summary, current status and plans

*From Run-1 analysis 

- We are smoothly running Run-5

- Target statistic expected to be reached 
in 2022-2023.

- New scraping mode currently being 
tested.

- ESQ system stable after Run-1, as well as 
magnet temperature. Better beam 
injection.

- Analysis and further measurements 
expected to reduce systematic 
uncertainties.



THANKS!



BACKUP



27

Run-1 Results
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Current status and future
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Remarks

- Latest experimental result of the muon anomaly (measured to 460 ppb precision) has been released.

- The new experimental average increased the tension with the Standard Model to 4.2σ.

- Run-2/3 analysis is ongoing which will improve the sensitivity by a factor of 2.

- E989 is now in the middle of Run-5, approaching the target statistics. Further results coming soon!


