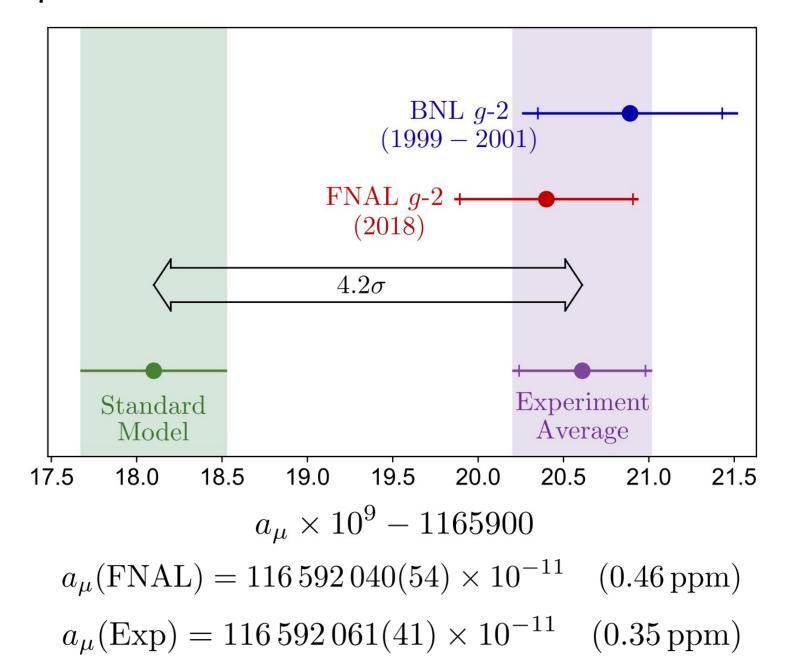


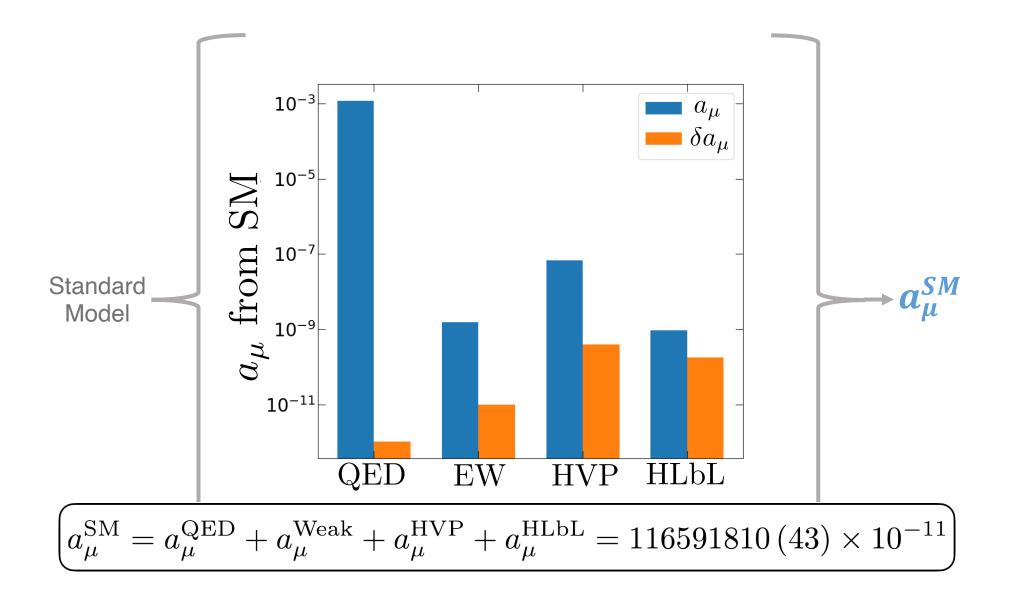
Beam Dynamics in the Muon g-2 Experiment at Fermilab


David A. Tarazona

23 March 2022

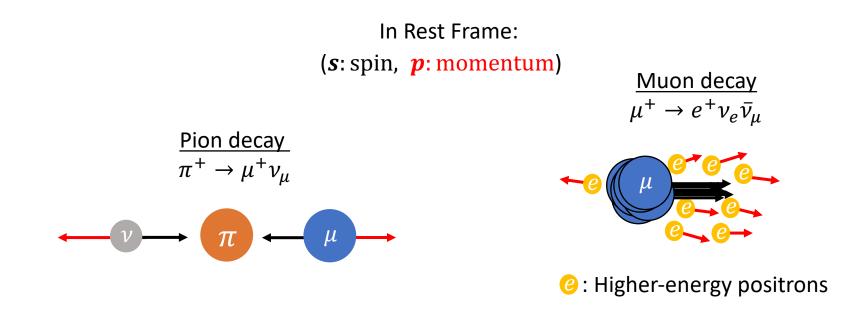
Outline

- a_{μ} Overview
- The Muon g-2 Storage Ring Magnet
- Muon beam
- Optical lattice
- Nonlinearities
- Beam dynamics systematic effects
- Summary, current status and plans


a_{μ} Overview: Run-1 Results

- 3.3σ significance between SM and the latest experimental result.
- Confirmed the BNL result (0.6σ).
- Combined experimental average at 4.2σ tension with SM from theory initiative.
- Statistical uncertainties dominate the experimental average result.
- Run-1 data is only 6% of the target statistics... More to come.

$$a_{\mu}^{Exp} - a_{\mu}^{SM} = (251 \pm 59) \times 10^{-11}$$


 a_{μ} Overview: a_{μ} from SM

*From Muon g-2 Theory Initiative: Phys. Rep. 887, 1 (2020).

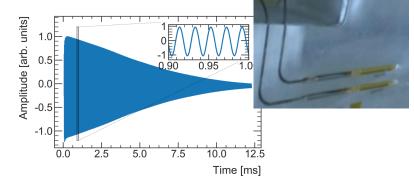
a_{μ} Overview: Experimental technique

- 1956: Lee and Yang \rightarrow Parity violation in weak decays would provide a way to measure the muon magnetic moment.

- In lab frame forward/backward muons from pion decay still highly polarized.
- From the parity-violating muon decay $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$, highest energy positrons are emitted in the muon spin direction with a probability proportional to the angle between these two directions.

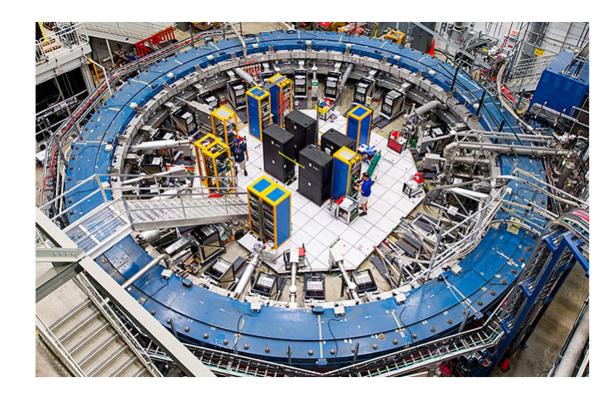
*Assume π 's, μ 's, and e's are positively charged, unless indicated otherwise.

Purpose of the Muon *g-2* Storage Ring


Purpose of the Muon *g*-2 Storage Ring

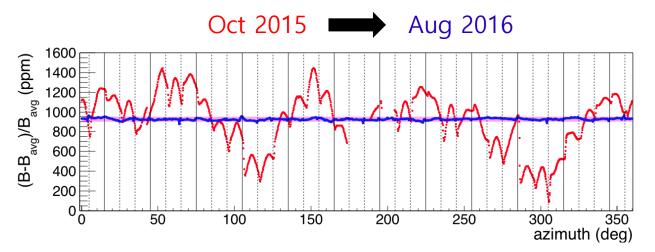
- The ring is designed to allow a highly precise measurement of the muon anomalous magnetic moment anomaly $a_{\mu} \equiv (g_{\mu} - 2)/2 (\Delta a_{\mu}/a_{\mu} \le 140 \text{ ppb})$:

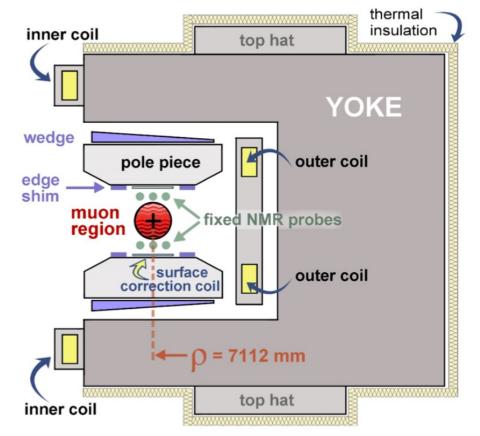
$$a_{\mu} = \underbrace{\frac{\omega_a}{\tilde{\omega}_p'(T_r)}} \frac{\mu_p'(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$


Main measurements:

- ω_a : The "anomalous precession frequency"
- $\tilde{\omega}'_p$: Proton Larmor frequency measured in a spherical water sample, weighted by the muon distribution $\left(B = \frac{\hbar \omega_p}{2\mu_p}\right)$.

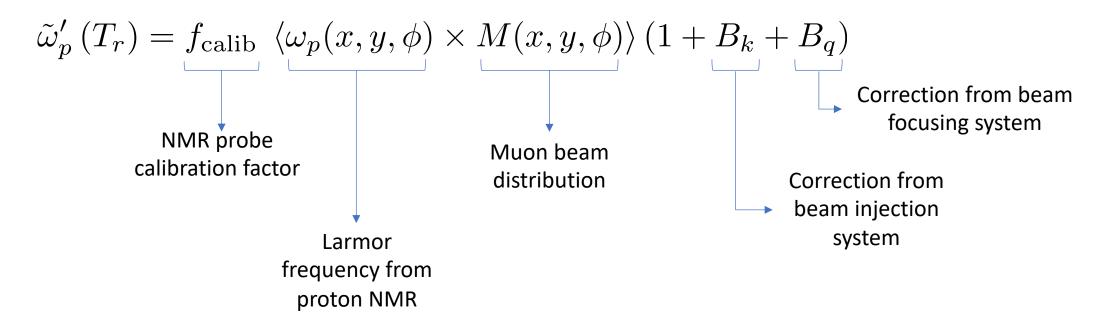
Ring parameters

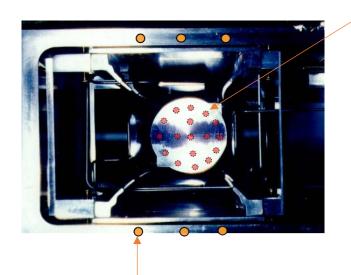

Ring Parameter Value*		
Nominal momentum	3.094 GeV/c	
Momentum acceptance	±0.56%	
Horizontal tune	0.944	
Vertical tune	0.330	
Bending magnetic field	1.4512991 T	
Bending radius	7.112 m	
Revolution period	149.2 ns	
β_x	[7.4,7.7] m	
β_y	[21,22] m	
D_x	[7.9,8.1] m	
Horizontal admittance	268 π mm.mrad	
Vertical admittance	93 π mm.mrad	
Maximum excursion	45 mm	
x' max	6 mrad	
y' max	2 mrad	
Focusing plates voltage	~18.3 kV	
Vacuum in storage volume	≲1.5E-6 Torr	
Current	5170 A	


*Representative values

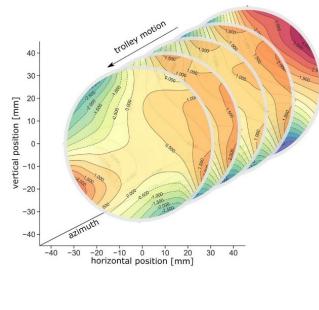
- Temporal stability and spatial homogeneity of the magnetic guide field are essential to the experiment.
- Average magnetic field experienced by stored muons needs to remain stable on the scale of ppm.

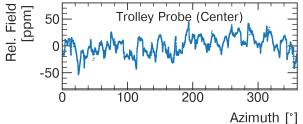
Main magnet


- Magnet shimming keeps the field highly uniform (local variations <50 ppm).
 - Passive shimming:
 - Pole pieces positioning drives the overall field strength.
 - Additional pieces of iron fine-tune azimuthally averaged field and control transverse gradients.
 - Active shimming:
 - *Surface coils* target specific azimuthally averaged multipole gradients.
 - *Power supply feedback* adjusts supply current to keep the average vertical field constant over time.

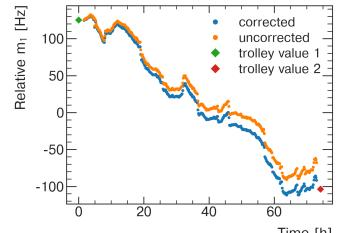

Magnetic field measurement (i.e., $\widetilde{\omega}'_p$)

$$\tilde{B} = \frac{\hbar \tilde{\omega}_p'(T)}{2\mu_p'(T)} = \frac{\hbar \tilde{\omega}_p'(T)}{2} \frac{\mu_e(H)}{\mu_p'(T)} \frac{\mu_e}{\mu_e(H)} \frac{1}{\mu_e}$$


Known to ~10 ppb precision



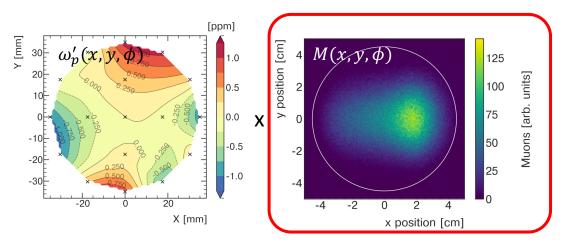
Magnetic field measurement

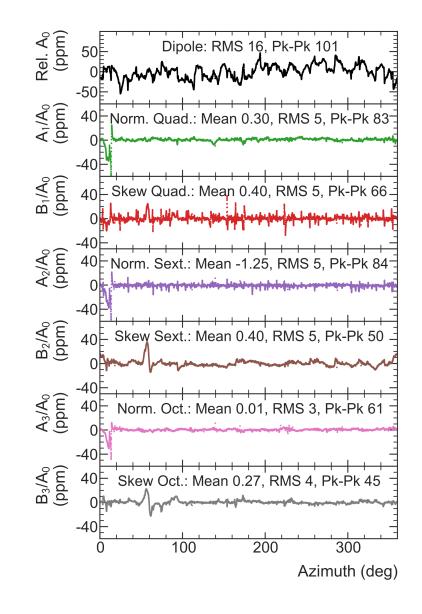


Field tracking between trolley runs is continuously tracked by 378 fixed NMR probes located throughout the ring. Field in storage region mapped out by NMR trolley every ~3 days.

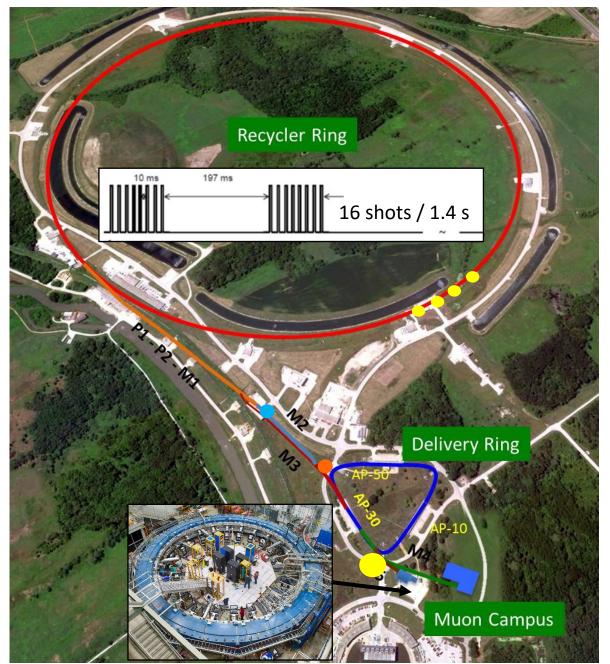
- Systematic effects associated with field mapping:
 - Position uncertainties (~5-25 ppb*)
 - Motion effects (~5-25 ppb)
 - Temperature effects (~5-25 ppb)
 - Configurations (<22 ppb)
 - Systematic effects associated with field tracking, from tracking offsets for all fixed probe stations (~20-40 ppb).

*Systematic errors representative of Run-1.

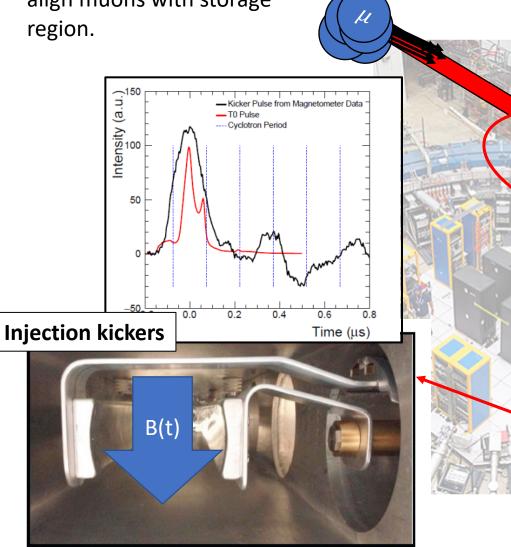

Magnetic field, beam-weighted


- 2D mapping of the field is described as a multipole expansion:

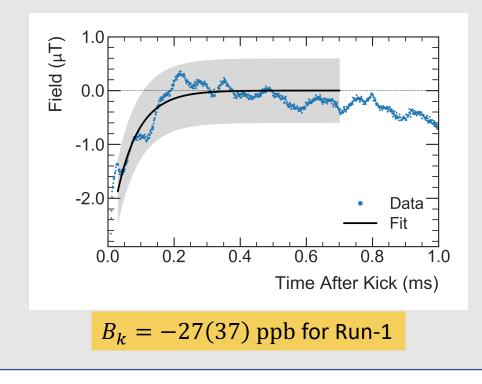
$$B \approx B_y = A_0 + \sum_{n=1}^{4} \left(\frac{r}{r_0}\right)^n \left(A_n \cos(n\theta) + B_n \sin(n\theta)\right)$$


- Local variations of radial and azimuthal fields (typically <100 ppm of main field) lead to $(B B_y)/B = O(10 \text{ ppb})$.
- The weighting simplifies to combining normal/skew terms in field expansion (c_n, s_n) with beam's multipole normal/skew projections (I_n, J_n) along azimuth:

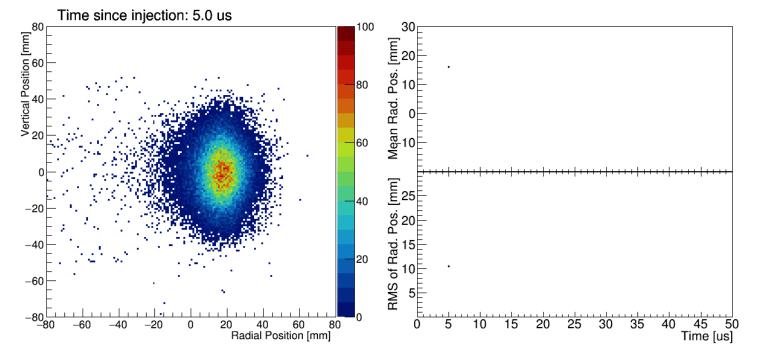
$$\tilde{B} = c_0 + \sum_{n=1}^{1} \left(c_n I_n + s_n J_n \right)$$


Muon beam production

- 10¹² protons per pulse (~8.89GeV) hit the production target.
- From parity violation in $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ decays, muons are highly polarized.
- Fermilab's Muon Campus beamlines transport ~3.1 GeV/c muons to storage ring.
- Muon beam is purified in Delivery Ring.


Muon beam injection

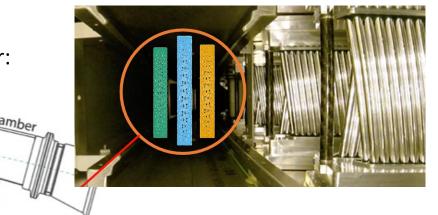
 Injection kickers aim to align muons with storage region.



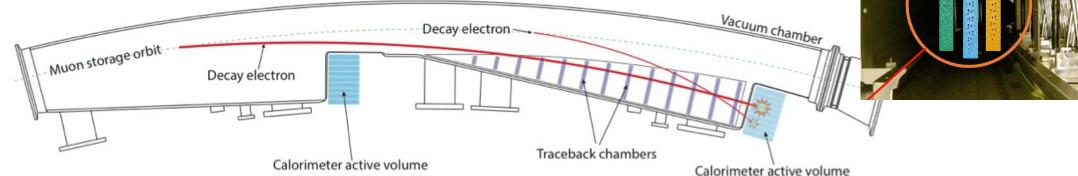
Kicker transient field

- Fast kicker pulses impedance mismatch induces eddy currents.
- Faraday magnetometer using fibers measured the kicker transient field (laser polarization rotates in TGG crystal in presence of the magnetic field).

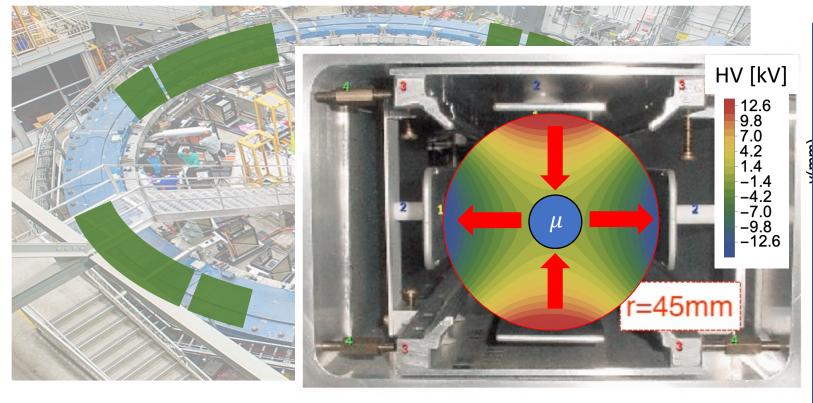
Muon beam injection



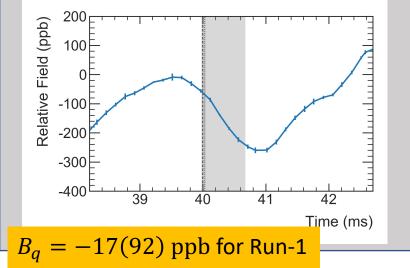
 Imperfect injection kick creates beam's radial centroid oscillation (aka "Coherent Betatron Oscillation" CBO).

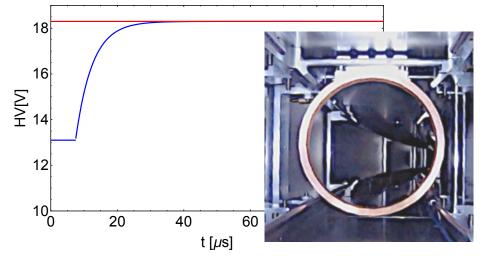

 $f_{CBO} = f_C(1 - Q_x) \approx 0.37 \text{ MHz}$

Optics mismatch between injected beam and ring produces beam's radial width oscillation.


-

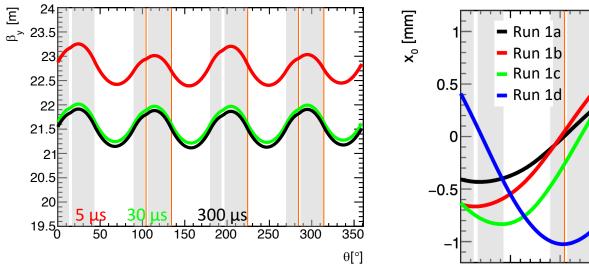
- Beam's transverse profile is measured with gaseous straw tracking detector:

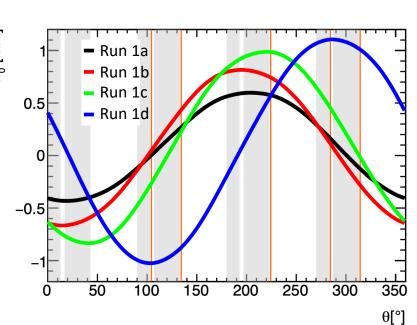



Muon beam vertical confinement

Quad plates mechanical vibration

- The ESQ plates are pulsed at 100 Hz.
- Mechanical vibrations induce a magnetic field transient in the storage region.

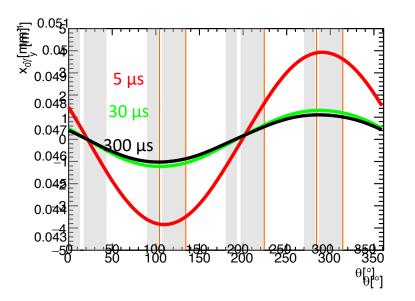

- The ElectroStatic Quadrupole system (ESQ) provides vertical focusing.
- The ESQ plates are mis-powered for closed orbit distortions.



300 350 θ[°]

> ية م 0.05 يا 0.049

 $^{-0.2}$ 0 50 100 150 200 250 300 350 θ [°]


- Beam stability is provided by relatively weak focusing:

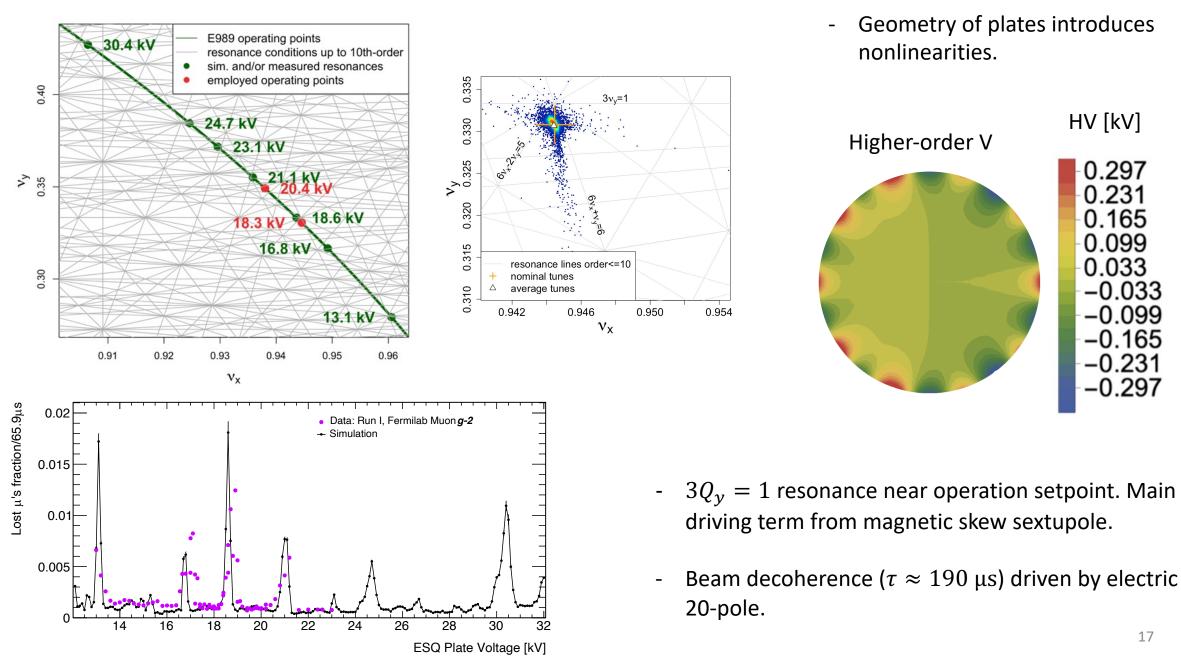
$$x'' + \frac{1-n}{\rho_0^2} x = 0$$

$$y'' + \frac{n}{\rho_0^2} y = 0$$

- Field index *n* from ESQ system:

$$n = \frac{\rho_0}{vB_0} \frac{\partial E_y}{\partial y}$$

$$npprox 0.1$$
 , $0\leq n\leq 1$


^{0_0}Weak-focusing modelling provides 1st order ring representation: 0.047

0.046
0.045
0.044
$$\beta_x(s) \approx \frac{\rho_0}{\sqrt{1-n}} \qquad \beta_y(s) \approx \frac{\rho_0}{\sqrt{n}} \qquad D_x(s) \approx \frac{\rho_0}{1-n}$$

0.043 0 50 100 150 200 250 300 350

 $Q_y \approx \sqrt[\theta]{n} \qquad \qquad Q_x \approx \sqrt{1-n}$

Nonlinearities

Beam dynamics systematic effects

Nonnegligible when:

- Muon collimation changes overall phase (C_{ml}) . [-11(5) ppb]
- Muon beam drifts during measurement (C_{pa}) . [-158(75) ppb]
- Momentum-dependent beam decay changes phase (C_{dd}) .

$$\frac{10^9}{10^9} \underbrace{Muon g^2 (FNAL)}_{\text{Run-1 Data}} N(t) \propto \cos\left(\omega_a^m t + \varphi_0(t)\right) = \cos\left(\omega_a \left[1 + \left\langle \frac{\Delta \omega_a}{\omega_a} \right\rangle + \frac{1}{\omega_a} \frac{d\varphi_0}{dt}\right] t + \varphi_0 + \cdots\right) \right]$$

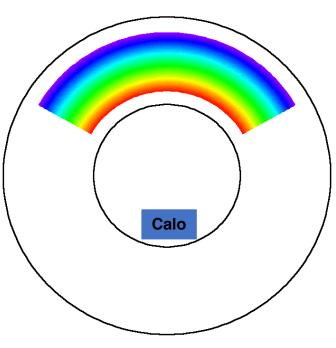
$$\frac{10^9}{10^9} \underbrace{Muon g^2 (FNAL)}_{\text{Run-1 Data}} N(t) \propto \cos\left(\omega_a^m t + \varphi_0(t)\right) = \cos\left(\omega_a \left[1 + \left\langle \frac{\Delta \omega_a}{\omega_a} \right\rangle + \frac{1}{\omega_a} \frac{d\varphi_0}{dt}\right] t + \varphi_0 + \cdots\right)$$

$$\frac{10^9}{10^9} \underbrace{Muon g^2 (FNAL)}_{\text{Run-1 Data}} N(t) \propto \cos\left(\omega_a^m t + \varphi_0(t)\right) = \cos\left(\omega_a \left[1 + \left\langle \frac{\Delta \omega_a}{\omega_a} \right\rangle + \frac{1}{\omega_a} \frac{d\varphi_0}{dt}\right] t + \varphi_0 + \cdots\right)$$

$$\frac{10^9}{10^9} \underbrace{Muon g^2 (FNAL)}_{\text{Run-1 Data}} N(t) \propto \cos\left(\omega_a^m t + \varphi_0(t)\right) = \cos\left(\omega_a \left[1 + \left\langle \frac{\Delta \omega_a}{\omega_a} \right\rangle + \frac{1}{\omega_a} \frac{d\varphi_0}{dt}\right] t + \varphi_0 + \cdots\right)$$

$$\frac{10^9}{10^9} \underbrace{Muon g^2 (FNAL)}_{\text{Run-1 Data}} N(t) \propto \cos\left(\omega_a^m t + \varphi_0(t)\right) = \cos\left(\omega_a \left[1 + \left\langle \frac{\Delta \omega_a}{\omega_a} \right\rangle + \frac{1}{\omega_a} \frac{d\varphi_0}{dt}\right] t + \varphi_0 + \cdots\right)$$

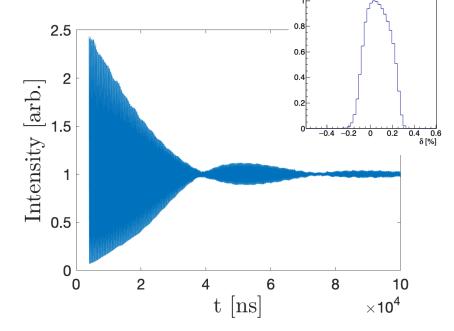
$$\frac{10^9}{10^9} \underbrace{Muon g^2 (FNAL)}_{\text{Run-1 Data}} N(t) \propto \cos\left(\omega_a^m t + \varphi_0(t)\right) = \cos\left(\omega_a \left[1 + \left\langle \frac{\Delta \omega_a}{\omega_a} \right\rangle + \frac{1}{\omega_a} \frac{d\varphi_0}{dt}\right] t + \varphi_0 + \cdots\right)$$


$$\frac{10^9}{10^9} \underbrace{Muon g^2 (FNAL)}_{\text{Run-1 Data}} N(t) \propto \cos\left(\omega_a^m t + \varphi_0(t)\right) = \cos\left(\omega_a \left[1 + \left\langle \frac{\Delta \omega_a}{\omega_a} \right\rangle + \frac{1}{\omega_a} \frac{d\varphi_0}{dt}\right] t + \varphi_0 + \cdots\right)$$

$$\frac{10^9}{10^9} \underbrace{Muon g^2 (FNAL)}_{\text{Run-1 Data}} N(t) \propto \cos\left(\omega_a^m t + \varphi_0(t)\right) = \cos\left(\omega_a \left[1 + \left\langle \frac{\Delta \omega_a}{\omega_a} \right\rangle + \frac{1}{\omega_a} \frac{d\varphi_0}{dt}\right] t + \varphi_0 + \cdots\right)$$

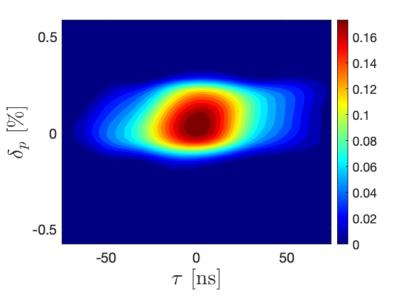
$$\frac{10^9}{10^9} \underbrace{Muon g^2 (FNAL)}_{\text{Run-1 Data}} N(t) \propto \cos\left(\omega_a^m t + \varphi_0(t)\right) = \cos\left(\omega_a^m t + \varphi_0(t)\right) = \cos\left(\omega_a^m t + \frac{1}{\omega_a} + \frac{1}{\omega_a} \frac{d\varphi_0}{dt}\right) + \frac{1}{\omega_a} \frac{d\varphi_0}{dt}\right) = \cos\left(\omega_a^m t + \frac{1}{\omega_a} + \frac{1}{\omega_a} + \frac{1}{\omega_a} \frac{d\varphi_0}{dt}\right) = \cos\left(\omega_a^m t + \frac{1}{\omega_a} +$$

Beam dynamics systematic effects: E-field correction


-

Higher Mom (Lower Freq) Lower Mom (High Freq)

 $C_E = -\frac{n\beta^2}{1-n} 2\langle \delta^2 \rangle \approx -480 \text{ ppb}$

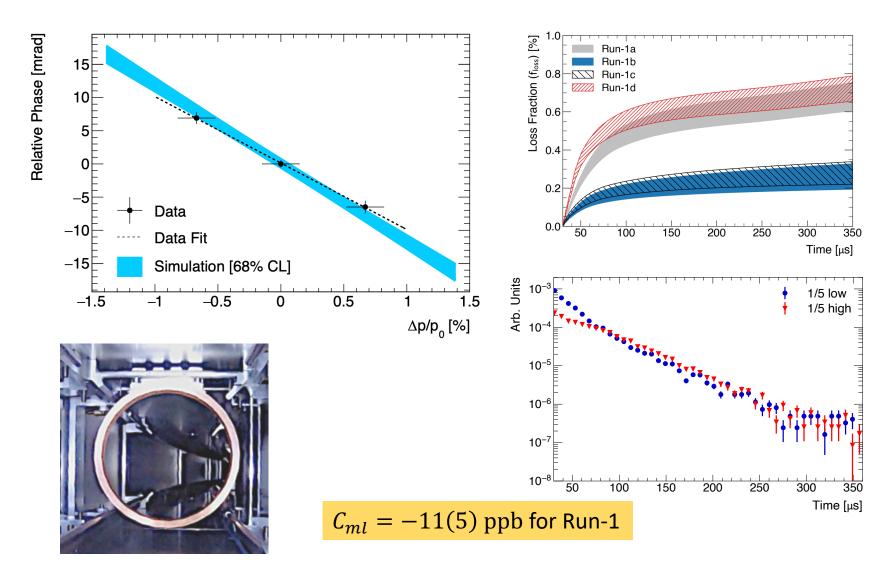

- Fast signal of muons population seen by Muon *g*-2 calorimeter system builds from cyclotron frequencies distribution.

Beam's momentum spread is measured from cyclotron frequencies distribution.

$$\frac{\Delta p}{p_0} = (1-n)\left(1 - \frac{f}{f_0}\right)$$

 Systematic error dominated by correlation between momentum and time-of-flights (~50 ppb):

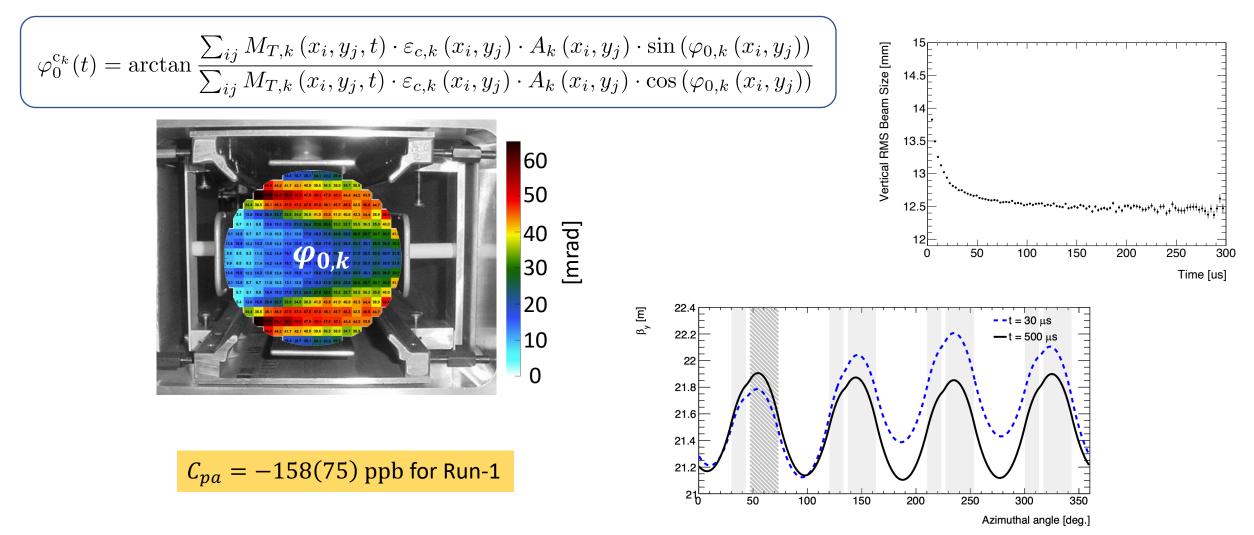
- With realistic tracking simulations, C_E standard expression is validated.


Beam dynamics systematic effects: Pitch correction

- Systematic errors dominated by tracking reconstruction and quadrupole calibration.

Beam dynamics systematic effects: Muon loss correction

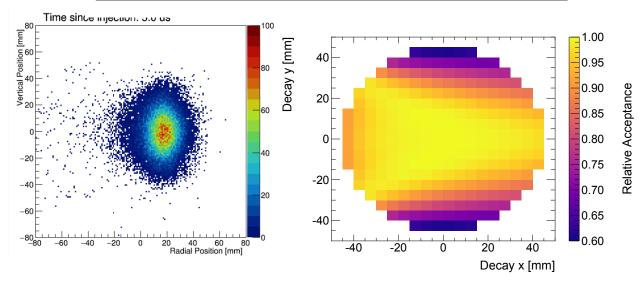
- Bias from phase-momentum correlation and momentum-dependent muon loss:

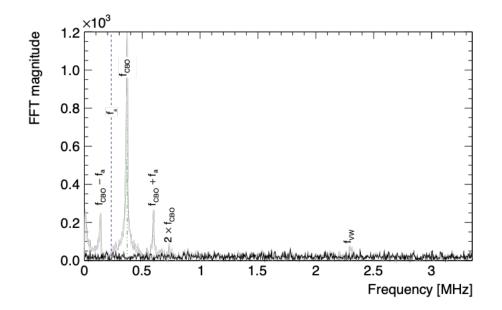


$$\frac{d\varphi_0}{dt} = \frac{d\varphi_0}{d\langle p \rangle} \frac{d\langle p \rangle}{dt}$$

- Muon loss greatly reduced in posterior Runs.
- Differential decay correction follows same principles.

Beam dynamics systematic effects: Phase-Acceptance correction


- Unstable transverse motion of muon beam, detection acceptance, and spatial dependence of phase bias ω_a :



Beam dynamics systematic effects: ω_a and CBO

- Beam betatron motion and detector acceptance introduce additional oscillations in positron histogram.

		Frequency $(rad/\mu s)$	
Physical frequency	Calculated expression	n = 0.108	n = 0.120
ω_c	v/R_0	42.15	42.15
ω_x	$\sqrt{1-n}\omega_c$	39.81	39.54
ω_{v}	$\sqrt{n}\omega_c$	13.85	14.60
w _{CBO}	$\omega_c - \omega_x$	2.34	2.61
$\omega_{ m VW}$	$\omega_c - 2\omega_y$	14.45	12.95
ω_a	$ea_{\mu}B/m$	1.44	1.44

$$F(t) = N_0 \cdot N_x(t) \cdot N_y(t) \cdot \Lambda(t) \cdot e^{-t/\gamma \tau_{\mu}} \\ \times [1 + A_0 \cdot A_x(t) \cdot \cos(\omega_a(R)t + \phi_0 \cdot \phi_x(t))]$$

$$\begin{split} N_x(t) &= 1 + e^{-1t/\tau_{\rm CBO}} A_{N,x,1,1} \cos(1\omega_{\rm CBO}t + \phi_{N,x,1,1}) \\ &+ e^{-2t/\tau_{\rm CBO}} A_{N,x,2,2} \cos(2\omega_{\rm CBO}t + \phi_{N,x,2,2}), \\ N_y(t) &= 1 + e^{-1t/\tau_y} \quad A_{N,y,1,1} \cos(1\omega_y \quad t + \phi_{N,y,1,1}) \\ &+ e^{-2t/\tau_y} \quad A_{N,y,2,2} \cos(1\omega_{\rm VW} \ t + \phi_{N,y,2,2}), \\ A_x(t) &= 1 + e^{-1t/\tau_{\rm CBO}} A_{A,x,1,1} \cos(1\omega_{\rm CBO}t + \phi_{A,x,1,1}), \\ \phi_x(t) &= 1 + e^{-1t/\tau_{\rm CBO}} A_{\phi,x,1,1} \cos(1\omega_{\rm CBO} \ t + \phi_{\phi,x,1,1}). \end{split}$$

. . .

Summary, current status and plans

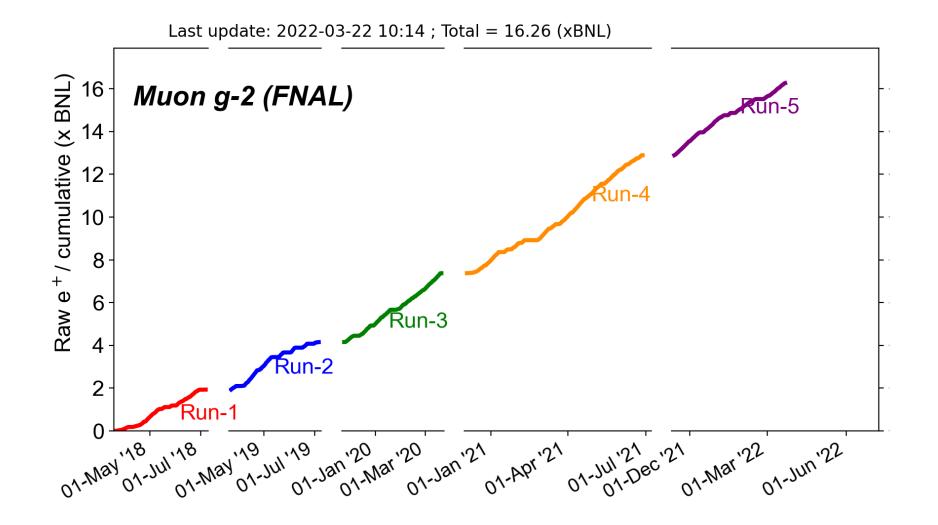
$$\frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}}\,\omega_a^m\left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}}\,\left\langle\omega_p(x, y, \phi) \times M(x, y, \phi)\right\rangle\left(1 + B_k + B_q\right)}$$

- We are smoothly running Run-5
- Target statistic expected to be reached in 2022-2023.
- New scraping mode currently being tested.
- ESQ system stable after Run-1, as well as magnet temperature. Better beam injection.
- Analysis and further measurements expected to reduce systematic uncertainties.

PHYSICAL REVIEW LETTERS 126, 141801 (2021)

TABLE II. Values and uncertainties of the \mathcal{R}'_{μ} correction terms in Eq. (4), and uncertainties due to the constants in Eq. (2) for a_{μ} . Positive C_i increase a_{μ} and positive B_i decrease a_{μ} .

Quantity	Correction terms (ppb)	Uncertainty (ppb)
ω_a^m (statistical)		434
ω_a^m (systematic)		56
C_{e}	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{\text{calib}}\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56
B_k	-27	37
B_q	-17	92
$\mu_{p}^{\prime}(34.7^{\circ})/\mu_{e}$		10
m_{μ}/m_{e}		22
$g_e/2$		0
Total systematic		157
Total fundamental factors		25
Totals	544	462



THANKS!

BACKUP

Run-1 Results

Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab	Beam dynamics corrections: PRAB (TBD) arXiv:2104.03240			
T. Albahri, ³⁰ A. Anastasi ⁹ , ¹⁰ K. Badgley, ⁷ S. Baeßler, ^{36, a} I. Bailey, ^{17, b} V. A. Baranov, ¹⁵ E. Barlas-Yucel, ²⁸ T. Barrett, ⁶ F. Bedeschi, ¹⁰ T. Bowcock, ³⁰ G. Cantat A. Chapelain, ⁶ S. Charit J. D. Crnkovic, ³⁴ S. Daba A. Driutti ^{26,29} V. N. Dugin T. Albahri, ³⁹ A. Anastasi, ^{11, a} K. Badgley, ⁷ S. Baeßler, ^{47, b} I. Bailey, ^{19, c} V. A. Baranov, ¹⁷ E. Barlas-Yucel, ³⁷ T. Barrett, ⁶ F. Bedeschi, ¹¹ M. Berz, ²⁰ M. Bhattacharva, ⁴³ H. P. Binnev, ⁴⁸ P. Bloom, ²¹ J. Bono, ⁷ E. Bottalico, ^{11, 32}				
S. Haciomeroglu, ⁵ T. 1 D. W. Hertzog, ³⁷ G. Hes M. Iacovacci, ^{9, k} M. Incag L. Kelton, ²⁹ A. Keshava B. Kiburg, ⁷ O. Kim, ³ S. Haciomeroglu, ⁵ T. Ha N. A. Weither J. Keshava B. Kiburg, ⁷ O. Kim, ³ S. Haciomeroglu, ⁵ T. Ha N. A. Mastasi, ^{11, a} A. Anisenkov E. Barlas-Yucel, ³⁷ T. Barr P. Bloon, ⁷ E. Mone	$\omega_a \text{ analysis: Phys. Rev. D 103, 072002} \\ \omega_a \text{ analysis: Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a \text{ below of the Phys. Rev. Lett. 126, 141801} \\ \omega_a below of the Phys. Rev. Phys. Rev. Phys. Rev. Phys. Rev. Phys. Rev. Phys. Rev. Phys. P$			
 N. A. Kuchinskiy, ¹⁵ K. R. Li, L^{24,*}: I. Logashenki, B. MacCoy, ³⁷ R. Madri W. M. Morse, ³ J. Mott, ³⁷, R. Kalourg, ^{7,21} O. F. G. M. Piacentino, ^{25, p} B. Quinn, ³⁴ N. Raha, ¹⁰ S. L. Satti ^{26, d} D. Stöking G. Sweetmore, ³¹ D. A. Sv K. Thomson, ³⁰ V. ⁷ G. Venanzoni, ¹⁰ T. Walt M. N. Pilato, ^{11, 32} K. T. Pitts, K. R. Labe, ⁶ J. LaBour I. Logashenko, ^{4, 4} A. Lorente R. Madrak, ⁷ K. Makino, ²⁰ J. Mott, ^{2, 7} A. Nath, ^{10, 31} M. Sorbara, ^{11, 2} D. Stöcking G. Sweetmore, ³¹ D. A. Sv K. Thomson, ³⁰ V. ⁷ G. Venanzoni, ¹⁰ T. Walt M. Sorbara, ^{12, 33} D. Stöcking G. Sweetmore, ⁴⁰ D. A. Sweig K. Thomson, ³⁰ V. ⁷ G. Venanzoni, ¹¹ T. Walto M. Sorbara, ^{12, 23} D. Stöcking G. Sweetmore, ⁴⁰ D. A. Sweig K. Thomson, ³⁰ V. Tis G. Venanzoni, ¹¹ T. Waltor M. Sorbara, ^{12, 23} D. Stöcking G. Sweetmore, ⁴⁰ D. A. Sweig K. Thomson, ³⁰ V. Tis G. Venanzoni, ¹¹ T. Waltor M. Sorbara, ^{12, 23} D. Stöcking G. Sweetmore, ⁴⁰ D. A. Sweig K. Thomson, ³⁰ V. Tis G. Venanzoni, ¹¹ T. Waltor M. Sorbara, ^{12, 23} D. Stöcking G. Sweetmore, ⁴⁰ D. A. Sweig K. Thomson, ³⁰ V. Tis G. Venanzoni, ¹¹ T. Waltor M. Sorbara, ^{12, 23} D. Stöcking G. Sweetmore, ⁴⁰ D. A. Sweig K. Thomson, ³⁰ V. Tis G. Venanzoni, ¹¹ T. Waltor M. Sorbara, ^{12, 23} D. Stöcking G. Sweetmore, ⁴⁰ D. A. Sweig K. Thomson, ³⁰ V. Tis G. Venanzoni, ¹¹ T. Waltor M. Phill H. Ngu R. N. Pila B. Qu M. Pila B. Qu M. P. Mill H. Ngu M. P. Mill H. Ngu N. Pila M. Sorbara, ^{12, 30} D. Stöcking K. S. C. Sheiser, ³⁷ A. Schreel M. Sorbara, ^{12, 30} D. Stöcking G. Sweetmore, ⁴⁰ D. A. Sweig G. Menzone, ⁴⁰ D. A. Sweig G. Venanzoni, ¹¹ T. Waltor K. Thomson, ³⁰ V. Tis G. Venanzoni, ¹¹ T. Waltor K. Sematara, ⁴⁰ K. Se	 X. Albahri,³⁰ S. Al-Kilani,³⁰ D. Allspach,⁷ L. P. Alonzi,⁴⁰ A. Anastasi,^{11,4} A. Anisenkov,^{4,1,5} F. Adfar,⁴⁴ S. Badlen,^{47,4} I. Balley,^{10,40} V. A. Baranov,¹⁷ L. Barlas,^{10,12} G. Baratz,¹⁷ A. Baratz,¹⁷ J. Bartz,¹⁷ A. Baratz,^{11,12} T. Bartz,^{16,12} B. Bartz,¹⁷ A. Bartz,^{11,12} T. Bartz,^{10,12} B. Bartz,¹⁷ A. Bartz,^{11,12} T. Bartz,^{10,12} B. Bartz,¹⁷ A. Bartz,^{11,12} T. Bartz,^{10,12} B. Bartz,^{11,12} T. Bartz,^{10,12} B. Bartz,^{11,12} T. Bartz,^{11,14} T. Bartz,^{11,14} T. Fartz,^{11,14} T. Gartz,^{11,12} T. Bartz,^{11,14} T. Bartz,^{11,14} T. Heroz,^{11,14} T. Gartz,^{11,12} T. Gartz,^{11,14} T. Fartz,^{11,14} T. Fartz,^{11,14} T. T. Heroz,^{11,14} T. Kattz,^{11,14} T. Fartz,^{11,14} T. S. Kattz,^{11,14} T. Haroz,^{11,14} T. T. Haroz,^{11,14} T. Kattz,^{11,14} T. Kattz,^{11,14} T. Fartz,^{11,14} T. Kattz,^{11,14} T. Kattz,^{11,14} T. Kattz,^{11,14} T. Kattz,^{11,14} T. Kattz,^{11,14} T. Kattz,^{11,14} T. Fartz,^{11,14} T. Bartz,^{11,14} T. B			
	(The Muon $g-2$ Collaboration)			

28

Remarks

- Latest experimental result of the muon anomaly (measured to 460 ppb precision) has been released.
- The new experimental average increased the tension with the Standard Model to 4.2σ.
- Run-2/3 analysis is ongoing which will improve the sensitivity by a factor of 2.
- E989 is now in the middle of Run-5, approaching the target statistics. Further results coming soon!