Research & Open Control Contro

ERSITY OF

Science and Technology Facilities Council

UK Research and Development Roadmap (July 2020)

- UK is internationally recognised for leadership in research.
- Record increase in public spending on R&D, reaching £22 billion per year by 2024 and 2025 (more than double previous spending)
- The aim is to fuel the UK's transformation into a scientific superpower
- A ``once-in-a-generation opportunity" to pursue ambitious new goals, the 'moonshots' that will define the next decade and beyond.

UK universities may need to rethink their R&D strategies, including a new approach to partnerships with industry and the private sector.

STFC Centres of Doctoral Training (CDTs)

- Highly skilled staff and students, with the right mindset for disruptive innovation (curious, tackling fundamental questions, thinking 'out-of-thebox')
- Bespoke training in data science, physics and astronomy, R&I
- Research generates extremely large data sets (e.g. from CERN or space telescopes), pushing the limits of data science techniques

- Contribute to the local economy (e.g., skills, innovation)

University of Liverpool & Liverpool John Moores University

- Both recognized as research intensive universities
- Research in Physics at both UoL and LJMU is <u>>90% 'world</u> <u>leading' or 'internationally-excellent'</u>, as judged by Research Excellence Framework (REF 2021), a national audit of university quality.
- Our research is recognized as creating real world impact.
- The two universities have developed strong collaborations (e.g., joint undergrad teaching in Physics & Astronomy, CDTs).

LIV.INNO CDT in Data Intensive Science University of Liverpool & Liverpool John Moores University

• One of 5 new CDTs in Data Intensive Science established across the UK. LIV.INNO is an investment of £1.3M to the two Liverpool universities.

11010101

- Three cohorts of PhD students, first starting in Oct. 2022. Financial support from STFC and match-funds from the two universities + external partners.
- Builds off our successful previous CDT, LIV.DAT
- A much more extensive collaboration across departments

LJMU: Astrophysics Research Institute + School of Computer Science and Mathematics

UoL: Department of Physics, Computer Science

Research areas LIV.INNO covers the entire STFC remit:

Physics (UoL): e.g., nuclear, theoretical, particle and accelerator physics.

TIUIU

Astronomy (ARI, LJMU): e.g., theoretical and computational astrophysics, stellar physics, timedomain, instrumentation.

KK

ERSITY OF

Particle physics (UoL):

- is one of the largest groups in the UK
- conducts research at international research facilities on three continents (e.g., LHC at CERN, SNO+, LZ, CTA)
- research into the fundamental particles and forces of nature: Higgs, neutrinos, ... & probing the nature of dark matter and dark energy.

Accelator physics (UoL):

- is amongst the world-leaders in beam diagnostics development, accelerator and light source design and optimization.
- makes key contributions to many of the global accelerator flagship projects (e.g., LHC, ELENA, AWAKE, EuPRAXIA)
- Broad spectrum: from fundamental research antimatter to developing accelerator applications for medical sector

Nuclear physics (UoL):

- fundamental questions concerning the properties of atomic nuclei and their nature
- applications to medical treatment and preservation of the environment.

Astrophysics at ARI (LJMU)

The Liverpool Telescope

Observing robotically since 2004

New Robotic Telescope

Research projects

The Centre focusses on addressing the data challenges presented by STFC research.

R&D is structured across three main Work Packages (WP):

Monte Carlo and high performance computing (WPI)
Artificial intelligence and machine learning (WP2)
Data analysis (WP3)

Big Data in Astronomy -rich data sets for ML & Al

Billions galaxies in the Universe:

Billions of stars in the Milky Way:

Example:

- ML techniques can detect debris from galaxy collisions & help categorize them
- Each pattern of debris structure is a piece of the puzzle in the process of galaxy formation
- Some 'gaps' in the data can be signatures of dark matter.

Example of partner:

'Real world' similarities: missing data due to cloud coverage. Fill in the 'gaps' with a physical model

Direct view via Sentinel-2 satellite

26 April 2020

Cloud-free view with ClearSky

26 April 2020

Method combines hyperspectral image analysis rooted in observational astrophysics with machine learning/AI tools.

Some of our partners

(potential internship placements, bespoke training)

- Adaptix
- AIMES
- Art Recognition
- Clatterbridge Cancer Centre
- CERN
- Cockcroft Institute
- CIVIDEC
- D-Beam Ltd
- DiRAC
- The Football Association (FA)
- Fermilab
- Fistral
- First Light Fusion

- FOTON
- STFC Hartree Centre
- Hewlett Packard Enterprise (HPE)
- IBM
- Liverpool Centre for Cardiovascular Science
- Mirion Technologies
- Naimuri
- Pilkington Technology Management
- NVIDIA
- Royal Liverpool University Hospital
- STFC Daresbury Laboratory
- ViBo Health

We are open to more partner collaborations!