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Previously on NA62 (PhD)

Carried out work on Neural Network Model + XAI-NPUTS and applications to NA62 analysis
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Multi-disciplinary Use Cases for Convergent new Approaches to Al
explainability
Monica D’Onofrio (Pl), Cristiano Sebastiani and myself since Dec2021

Goal: quantifying strengths and solving
weaknesses of new and state of the
art XAl methods

Three phases:
1. Apply XAI-NPUT techniques
2. ldentify shortcomings and metrics
3. Get new transparent algorithms

Strategy: study XAl in heterogenous use

cases from High Energy Physics (HEP), medical
imaging, diagnosis of pulmonary, tracheal and
nasal disease, neuroscience

CHIST-ERA 2022 1st Prize winning Video: ,

http://widgixeu-responseuploads.s3.amazonaws.com/fileuploads/90010018/90420529/140-2f7727dc2c9debd53715877981b60bce_ MUCCA_videO_720p.mp4



MUCCA: Work Plan

Scientific outputs @) Samples and xAl-tools exchange
Social impact {——) Management and communication exchange

Publwatnog,pl::a:;:r’nr: ::pllcatlon tools Tools for detectors /
WP2: HEP detectors

~L - . Application of Al-methods to calorimeter

WP1: HEP phySICS detectors (PADME). Provide simulation of
electromagnetic showers, benchmarking
and tools for xAl. Deliverables: samples
and tools for xAl methods, reports.

WP3: HEP real-time systems
Develop Al-based real-time selection algorithms
for FPGAs at ATLAS. Use xAl methods for to
understand complex systems. Deliverables:
tools to transfer knowledge for xAl methods in
real-time applications, publication.

Application of Al-methods to searches for
new physics at ATLAS. Provide samples
and tools to allow testing of xAl. Improve
transparency, impact of systematics
explainability. Deliverables: HEP
publications, benchmarks use-cases,

eneralized tools.
g 0
School/Hackaton WP7: xAl-Tools a 3
publications Survey of all available xAl methods WP4: Medical imaging
V relevant for use-cases; develop xAl usage Develop xAl pipeline to segmentation of
. pipelines; analysis of results. brains in magnetic resonance imaging.
V‘ WPO: Manag_ement Y Deliverables: document xAl procedures Use publicly available databases for XAl
PrOjec;t and reports coordlnathn, and engineering pipelines for general use. developments, focusing on explainability
planning of meetings, networking and xAltools, | Kaggle challenge for exploitation. of training strategy. Deliverables: xAl
participation in public conferences.  Kaggle challenge

Dissemination, communication and
exploitation of results (publications,

reports, social media)
o A

Clgoﬁmms and stability evaluation. /
7AN

4 )

AN T sm.\ WP6: Neuro-science /" WP5: Functional Imaging\

Test xAl techniques to uncover

Computer ogy i i '> .
|me,.fpa°“ computational brain strategies on NHP Testt xAIlr\nethodol Iln respltratory : {
Meetings and selection of dynamical neural models system. Analyse complex systems N -

(passage of air and mucus, expected non- \
; g ; linear responses) to derive model and test
from DNNs trials, quantification of quality 3
. xAl. Deliverables: prototype of xAl
and model selection. : : :
algorithm implementation, assessment of

Open doors days -

‘ produced predictions. j

stakeholders | Deliverables: reports on saliency maps

|_Diagnostic tools




HEP1-SUSY & DARK SECTOR

» Search for dark matter candidates resulting from the decay of new particles predicted by Supersymmetry the
typical HEP case for ML classification (ATLAS analysis — by Hamish, now Dr, and Monica):

e Extract small signal of interest from large SM background
» Subtle/complex differences in variable correlations distinguish signal from background

e Build ML discriminator to distinguish backgrounds from SUSY signals, trained on simulated Monte Carlo
samples
» Use classifier output score as discriminant variable for Hypothesis Testing (HIGH Level variables)

| > Search for “dark” photons, not yet discovered because
too feebly interacting with ordinary matter (ATLAS analysis - by Cristiano, Alessandro — PhD, and Monica):

* In this case, signal leaves different signature in the detector than background

* ML discriminator use image classification trained to distinguish background processes from signal mapping
clusters of hadrons (jets) in 3D coordinates

— In order to extract information from the whole calorimeter, from a single jet 3D objects (Very Low Level)
. |

More on the actual results from ATLAS in Cristiano's talk tomorrow
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Approach to SUSY analysis

Analysis selects events with missing transverse momentum, a lepton and b-jets possibly

coming from the decay of a Higgs boson "
Tested multiple ML classifiers: BDT, NN o
Use BDT (XGBoost) for reduced complexity, constructed from regression tree functions, ?ﬁ
using multi-classification with output scores containing the predicted probability of an e
event being in each class. )
‘qc'; __J m a}nglf—top ] E' . d_:Luf:l
. . > E m W+jets mm Higgs o
Used SHAP (SHapley Adaptive exPlanations, S| E ATLASIntemal mi o Sz "
2017) to identify variables with largest impact for E xemr 25 M 3N wh 2500 100.0 o
. . C = e = G1N2 Wh 300.0 150.0 bl quant
signal and that are most different when SL - GiN2Wh 4000 2500 P
comparing simplified vs full reconstruction 2F e | o
samples @ e
8 etaj2
) - W signal
v" Me: Build eXplainable Graph data, Use GNNs and o —
New SOTA Metrics T e B Other
\/ Goal: REdUCQ deper]dENCieS on modelling from NZ g;_ ................................................. S = Z::ﬁ - ttbar
input variables e . mm single-Top
09 091 092 093 094 095 0.96 0.97 098 0.9 1 0 0B ok o 1 1s 1 1B
XGB Slgnal SCOfe mean(|SHAP value|) (average impact on model output magnitude)

(more in Hamish' thesis)
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Dark Photon Analysis: 3D-CNN Inputs and structure

 Three 3D-CNNs processing
low level information
(images)
e Results combined to obtain
single output
* Training datasets from MC
events:
* ~400k events for each
dataset, signal and
background

Cristiano, Alessandro - PhD, Monica
ATLAS-CONF-2022-001
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Output score
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Note: a Dense Neural Network (DNN) is also developed to discriminate signal from candidates that
originate from the cosmic-ray background. The DNN is implemented using Keras with the Tensorflow
backend and classifies each stand—alone object potential referrable to the signal based on low-level inputs
including timing variables



Implementing Graphs

Dark Photon Jet MC for signal, and background from
QCD jet ATLAS data with relevant kinematics.

Nodes are individual clusters in all layers of
calorimeter sampling

A single Attribute: Normalised Energy
deposit/Cluster (max scaled)

3-D coordinates to spread the nodes in the graphs
accordingly (Eta, Phi, Sampling Layer)

"Hertz Probability Distribution" and TaxiCab metric
were used in the radius threshold
of Networkx "geometric graph" generator

MP potential: Building the edges with covariant
distance as weight (p=2 norm between nodes)

SIGNAL

Energy displayed as: colors_and_size

Background

Energy displayed as: colors_and_size
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Dark Photon Analysis: ResGNN Inputs and structure
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Demo: MPL ResGNN

ROC curve, AUC = 0.9301 ROC curve, AUC = 0.9401
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 ROC curves Nearly the same
Only 1% less for ResGNN
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Demo: MPL ResGNN
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1 order of magnitude lower background tail
overlapping Signal region (Less Mistag for ResGNN)
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Low level inputs for jet discrimination

Extract low level information from the calorimeter geometry by singling out jets in either 3D images or graphs

The ATLAS detector
orthogonal view
B D
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Sampling

Graphs for XAl:
Exploit the calorimeter 3D jet images: + Train a fully optimized GNN
ranularity to parametrize Train a CNN used as reference for + Small cloud space objects
9 - Super Efficient Database and

the energy deposits: x, y, z, the study . . easy to manipulate
energy Very sparse images -> sub-optimal

Additional higher level variable can can be added as features to further improve the network performance, although the goal is to
have them already ‘learned’ by the network by using only the low level inputs
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Towards the X in X-Al

s Use innovative metrics sensitive to small changes in

Implementation (see backup for references) |
+** To do so, we will focus on the GNN optimisation to Loss 4 zucchin \ Poronns influence

zucchini f Opponents

fully exploit the input features and network m
capabilities: ——
» Optimise graph attributes/weights to best 2otk
balance (Performance vs. Computation)
» Try other modules like Attention module
with GATv2CONYV Layers
»  Systematically train homogeneous modules ,
Grid SWEEP-like Hyperparameter Tuning B il v v e s #L d% di 1
s Use explainer layers: return subgraphs and/or e e
subsets that mostly contribute to the prediction.
(Captum packages for these metrics developed and

added by WP7)
14
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https://ai.googleblog.com/2021/02/tracin-simple-method-to-estimate.html



Plans and next steps

» Build a best optimised graph dataset and test a first GNN (with MPL ResGNN-like)
implementation using only the same information exploited by the reference CNN
> One-to-one performance comparison between the two
> relate jet images directly to graphs to help explain the GNN predictions for a better Al

explainability (e.g, understand background jets predictions in more detail)
> Rerun ATLAS CNN-based analysis with the new GNN to assess the improvement and publish
open data to reproduce the study documented in a pub note (Service Task)
> Consider larger samples and apply similar approaches to SUSY case study
> Converge with all WPs to obtain a single XAl tool suitable for all cases

Multiple level impact:
1. Enable users to better understand XAl models
and diagnosis limitation
2. Systematic understanding of which XAl methods better adapt
to most applications
3. Skill development and training for young researcher

Dissemination:

» scientific publication, conferences
» open access toolkit

» Hackathon/School at Liverpool...




TECHNICAL

SLIDES
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The Consortium

Sapienza University of Rome (IT)
Departments of Physics, Physiology,
and Information Engineering

HEP: data-analysis, detectors, simulation Al: ML/DL methods
in basic/applied research and industry, intelligent signal
processing. Neurosciences: brain encoding of

behaviours, ML in electrophysiology, multi-scale modelling
approaches

Istituto Nazionale Fisica Nucleare (IT)
Rome group INFN

Fundamental research with cutting edge
technologies and instruments, applications in several fields
(HEP, medicine imaging/diagnosis/prognosis/therapy)

Medﬁa
Medlea S.r.l.s (IT) /*/-—’\_/

High tech start-up, with an established track record in medical
image analysis and high-performance simulation and
capabilities of developing and deploying industry-standard

software solutions

University of Sofia St.KI.Ohridski (BG)
Faculty of Physics

extended expertise in detector development,
firmware, experiment software in HEP

Polytechnic University of Bucharest (RO)
Department of Hydraulics, Hydraulic
Equipment and Environmental Engineering

Complex Fluids and Microfluidics expertise: mucus/saliva rheology,
reconstruction and simulation of respiratory airways, Al applications
for airflow predictions in respiratory conducts

University of Liverpool (UK)
Department of Physics

(S
physics data analysis at hadron colliders experiments,
simulation, ML and DL methods in HEP )

ﬁ\w\zmo%
) ’ :

2
Istituto Superiore di Sanita ¢ Q g
la <&

’
1)
‘.

expertise in neural networks modeling, cortical network
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HEP Use-Cases

WP1: developed Al algorithms (CNN, Graph NN),
targeted to event classification and process
discrimination, for new physics and dark matter
searches at ATLAS. First review of suitable state-of-art xAl
algorithms performed

Entries normalised to unit area

—_
o
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Tao  PrEMNARY o prenaRy < ereLnmany = WP2: Al algorithms (CNN, autoencoder),
: H & % = successfully developed and applied to identify pulses,
e /,;/ g determing amplitude and time of arrival in close to
i N | { RN reality simulated data of the PADME calorimeter

Generated amplitude [mV]

Generated time [ns]

WP3: developed complete pipeline for an Al based event

selection algorithm to expand physics potential of the ATLAS

experiment. CNN model with compression and simplification

strategies to make easier to interpret, and faster to execute the

Al model, for the conversion and implementation in the firmware

of FPGA accelerators. Obtained CNN inference in 80/150nsimage! | XAlin HEP

Eur. Phys. J. C 81,
969 (2021)
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MED and NS Use Cases

Brats17 training influence
WP4: Implemented Al models for the brain lesion g 4i3 (gradient tracing) _
segmentation in the Brats17 MRI dataset hd oA saliency
(Unet2D, Resnet 3D). Data augmentation | . 3l - maps
techniques to enhance performances tested. ) W
Selected state-of the art xAl algorithms, state-of-the-art e i
under implementation. XAl —
'E Moebius® " ‘ &
/ 3\ Multiphase 1|\ \
L\ viscoelastic fluid WP5: procedure for the realization of the prototypes of the trachea

Iroyd-B model . . .
\ (Holroyd-8 model) bifurcation (reconstruction of the geometry from the CT scan,
L aw

numerical code) completed. Study of the GNN model

Optimize GNN for the simulation of the the air-flow

over information

content Reaction decmon s, Sal iency

, : . Time (RT map (XAl
WP6: designed and realized a specific CNN (fed by ' (RT), ap (xAl)
electrophysiological signals) based on a -
ResNet to uncover an inner decision value increasing in go
time as a linear ramp eventually allowing to predict at er
single-trial level the onset timing of overt MOVeMENES. . ionani | XAl i,

Test of various xAl algorithms underway 20 o a0 a0 @ w0 100



. . (Simonyan & al., 2013)
(Vanilla) Saliency maps

A is an object of the same dimensionality as the

input, providing information about which features were most
important for a given prediction.

Formally (i is the index of the class of interest):

| 0 fi(x)
Saliency map = max
channels 8£U

20
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Limits of saliency maps

Simple saliency maps have several issues that balances their
simplicity:

1. They are highly unstable wrt small changes in the input.
2. They are not well localized.

3. They have no formal guarantees.

In particular, they do not respect a property called sensitivity: if two
inputs differ for a single pixel but have different predictions, a
saliency map is not guaranteed to highlight that pixel.



(Pruthi & al., 2020)
Gradient Tracing

Consider an idealized training procedure where at iteration t we
update the parameter vector as:

Wiyl = Wy — UVZ(’LUt, Zt)

The influence of point z on point z' is defined as:

TracInldeal(z, ') Z H(wy, 2') — l(wiyq, 2)



: ~ (Pruthi & al., 2020)
Gradient Tracing

By first-order approximation, it can be shown that:

TracInldeal(z, 2) ~ Z nVi(wy, z) - VI(wy, 2')

lizi==z
This can be approximated by storing k checkpoints during
training and computing:

TracInldeal(z, 2') ZUVZ w;, z) - VI(w;, 2')
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Figure 5: CIFAR-10 results: Proponents and opponents examples of a correctly classified cat for
influence functions, representer point, and TracIn. (Predicted class in brackets)
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(llyas & al., 2022)
Datamodels

Denote by f(x;S) the output of a network f on x after training on a
set of data S. A GEIEInlI:[l is a model trained to approximate this

function on a fixed x.

Suppose we sample uniformly subsets of the original training set,
and train different models:
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Datamodels

Definition 1 (Datamodeling). Consider a fixed training set S, a learning algorithm A, a target example x,
and a distribution Dg over subsets of S. For any set S' C S, let f4(x;S") be the (stochastic) output of training
a model on S’ using A, and evaluating on x. A datamodel for x is a parametric function gg optimized to predict
fa(x;S;) from training subsets S; ~ Dsg, i.e.,

g0 :{0,1}5 5 R, where 6 = arg min Iﬁé’:ﬂDs L (80(1s,), fa(x:5:))],

1. € {0, 1}15! is the characteristic vector of S; in S (see (3)), L(-, ) is a loss function, and E(™) is an m-sample
empirical estimate of the expectation.

In practice, we can train linear datamodels:

go(1s,) = 6" 15, + 6o
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Implementing datamodels

A Pseudocode for Estimating Datamodels

Algorithm A.1 An outline of the datamodeling framework: we use a simple parametric model as a proxy
for the entire end-to-end training process.

1: procedure ESTIMATEDATAMODEL(target example x, trainset S of size d, subsampling frac. « € (0,1))

2 T « ] > Initialize datamodel training set
3 fori € {1,...,m} do

4 Sample a subset S; C S from Dg where |S;| =« -d

5: Yi < fa(x;S;) > Train a model on S; using A, evaluate on x
6: Define 15, € {0, 1}¢ as (15;,); = 1if xj € S; else 0

7 T < T+ [(1s,yi)] > Update datamodel training set
8 0 <~ RUNREGRESSION(T) > Predict the y; from the 15, vectors
9

return ¢ > Result: a weight vector § € R?

P~y
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