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Previously on NA62 (PhD)

• One Instance: Track Matching Metrics to Tame 
dominant Background

1. Tails: the final fraction of K+→π+π0 events entering signal 
regions of πνν

2. Fractional Acceptance Variation: The relative difference
between the number of normalization events selected in the
standard analysis and the ones selected using the NN K−π
matching algorithm
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• Best Values for Tails (Lowest) with cuts applied on both 2-D
NN discriminant and FAV (NN-based High level Variable)

• We obtained 35% lower π+π0 background
• XAI metrics helped ameliorate Signal Acceptance

Carried out work on Neural Network Model + XAI-NPUTS and applica<ons to NA62 analysis
• NA62 aims to measure precisely the BR of K+ → π+ ν ν̄
• Background must be kept extremely low due to Open 

KinemaXcs in m2miss
• A proper Track matching is a must



Now ATLAS in MUCCA: CHIST-ERA Project
Multi-disciplinary Use Cases for Convergent new Approaches to AI 
explainability
Monica D’Onofrio (PI), Cristiano Sebastiani and myself since Dec2021

Goal: quantifying strengths and solving 
weaknesses of new and state of the 
art XAI methods

Strategy: study XAI in heterogenous use 
cases from High Energy Physics (HEP), medical 
imaging, diagnosis of pulmonary, tracheal and 
nasal disease, neuroscience

3CHIST-ERA 2022 1st Prize winning Video:
http://widgixeu-responseuploads.s3.amazonaws.com/fileuploads/90010018/90420529/140-2f7727dc2c9debd53715877981b60bce_MUCCA_videO_720p.mp4
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• Eight inter-disciplinary and inter-connected  Work PackagesMUCCA: Work Plan
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HEP1-SUSY & DARK SECTOR

Ø Search for “dark” photons, LIGHT LL PARTICLES BELONGING TO A NEW HIDDEN SECTOR not yet discovered because 
too feebly interacting with ordinary matter (ATLAS analysis - by Cristiano, Alessandro – PhD, and Monica):
• In this case, signal leaves different signature in the detector than background 
• ML discriminator use image classification trained to distinguish background processes from signal mapping 

clusters of hadrons (jets) in 3D coordinates
à In order to extract information from the whole calorimeter, from a single jet 3D objects (Very Low Level)
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Ø Search for dark matter candidates resulting from the decay of new particles predicted by Supersymmetry the 
typical HEP case for ML classification (ATLAS analysis – by Hamish, now Dr, and Monica):
• Extract small signal of interest from large SM background 
• Subtle/complex differences in variable correlations distinguish signal from background
• Build ML discriminator to distinguish backgrounds from SUSY signals, trained on simulated Monte Carlo 

samples
• Use classifier output score as discriminant variable for Hypothesis Testing (HIGH Level variables)

More on the actual results from ATLAS in Cris6ano's talk tomorrow



Approach to SUSY analysis
Analysis selects events with missing transverse momentum, a lepton and b-jets possibly 
coming from the decay of a Higgs boson

Tested mulGple ML classifiers: BDT, NN

Use BDT (XGBoost) for reduced complexity, constructed from regression tree funcGons, 
using mulG-classificaGon with output scores containing the predicted probability of an 
event being in each class. 
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Figure 18: Binned signal score in the signal region for the Wh analysis. The lower panel shows the cumulative
Glen-Cowan significance.

30th July 2021 – 11:56 54

Sc
al

e 
hi

dd
en

6Joseph Carmignani | XAI in HEP

17

Case Study- 
Electro-Weak Wh analysis
Explainable AI input: SHAP (SHapley Adaptive exPlanations) Paper link

We can see which variables impact which classification

This is reliable and independent of the input data


• Used SHAP (SHapley Adaptive exPlanations, 
2017) to identify variables with largest impact for 
signal and that are most different when 
comparing simplified vs full reconstruction 
samples 

ü Me: Build eXplainable Graph data, Use GNNs and 
New SOTA Metrics

ü Goal: Reduce dependencies on modelling from 
input variables

(more in Hamish' thesis)



Dark Photon Analysis: 3D-CNN Inputs and structure

• Three 3D-CNNs processing 
low level informa8on 
(images)

• Results combined to obtain 
single output

• Training datasets from MC 
events:
• ~400k events for each 

dataset, signal and 
background

7

Cris6ano, Alessandro - PhD, Monica
ATLAS-CONF-2022-001 



Output score  

ROC

Note: a Dense Neural Network (DNN) is also developed to discriminate signal from candidates that 
originate from the cosmic-ray background. The DNN is implemented using Keras with the Tensorflow
backend and classifies each stand–alone object potential referrable to the signal based on low-level inputs 
including timing variables
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Implemen8ng Graphs
Dark Photon Jet MC for signal, and background from 
QCD jet ATLAS data with relevant kinemaBcs.

Nodes are individual clusters in all layers of 
calorimeter sampling

A single AFribute: Normalised Energy 
deposit/Cluster (max scaled)

3-D coordinates to spread the nodes in the graphs 
accordingly (Eta, Phi, Sampling Layer)

"Hertz Probability Distribution" and TaxiCab metric 
were used in the radius threshold 
of Networkx "geometric graph" generator

MP potential: Building the edges with covariant 
distance as weight (p=2 norm between nodes)  

9

SIGNAL Background



Dark Photon Analysis: ResGNN Inputs and structure

10

Output score  



3 D - C N N

11
Only 1% less for ResGNN

• ROC curves Nearly the same

R E S G N N

Demo: MPL ResGNN



R E S G N N 1

R E S G N N 2
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90% TNR (True Negative Rate) 
Or Background Purity

Testing steps/epochs

3 - C N NDemo: MPL ResGNN
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• 1 order of magnitude lower background tail 
overlapping Signal region (Less Mistag for ResGNN)

R E S G N N



The ATLAS detector 
orthogonal view

Exploit the calorimeter 
granularity to parametrize 
the energy deposits: x, y, z, 
energy

Graphs for XAI:
• Train a fully optimized GNN
• Small cloud space objects
• Super Efficient Database and 

easy to manipulate 

3D jet images:
• Train a CNN used as reference for 

the study
• Very sparse images -> sub-optimal

Low level inputs for jet discrimination
Extract low level information from the calorimeter geometry by singling out jets in either 3D images or graphs

Additional higher level variable can can be added as features to further improve the network performance, although the goal is to 
have them already ‘learned’ by the network by using only the low level inputs

13
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v Use innovative metrics sensitive to small changes in 
the input like TRAC-IN and Data-Models 
Implementation (see backup for references)

v To do so, we will focus on the GNN optimisation to 
fully exploit the input features and network 
capabilities:

Ø Optimise graph attributes/weights to best 
balance (Performance vs. Computation)

Ø Try other modules like Attention module 
with GATv2CONV Layers

Ø Systematically train homogeneous modules 
Grid SWEEP-like Hyperparameter Tuning

v Use explainer layers: return subgraphs and/or 
subsets that mostly contribute to the prediction. 
(Captum packages for these metrics developed and 
added by WP7)

Towards the X in X-AI 

A typical workflow with Trac-in

h"ps://ai.googleblog.com/2021/02/tracin-simple-method-to-es9mate.html



Ø Build a best opUmised graph dataset and test a first GNN (with MPL ResGNN-like) 
implementaUon using only the same informaUon exploited by the reference CNN
Ø One-to-one performance comparison between the two
Ø relate jet images directly to graphs to help explain the GNN predicUons for a beXer AI 

explainability (e.g, understand background jets predicUons in more detail)
Ø Rerun ATLAS CNN-based analysis with the new GNN to assess the improvement and publish 

open data to reproduce the study documented in a pub note (Service Task)
Ø Consider larger samples and apply similar approaches to SUSY case study
Ø Converge with all WPs to obtain a single XAI tool suitable for all cases

Dissemina(on:
Ø scien<fic publica<on, conferences
Ø open access toolkit
Ø Hackathon/School at Liverpool...

15

Plans and next steps



T E C H N I C A L  
S L I D E S
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The Consortium

Medlea S.r.l.s (IT)

High tech start-up, with an established track record in medical 
image analysis and high-performance simulation and 
capabilities  of developing and deploying industry-standard 
software solutions 

Sapienza University of Rome (IT) 
Departments of Physics, Physiology, 
and Information Engineering

HEP: data-analysis, detectors, simulation AI: ML/DL methods 
in basic/applied research and industry, intelligent signal 
processing. Neurosciences: brain encoding of complex
behaviours, ML in electrophysiology,  multi-scale modelling 
approaches

Istituto Nazionale Fisica Nucleare (IT)
Rome group

Fundamental research with cutting edge 
technologies and instruments, applications in several fields 
(HEP, medicine imaging/diagnosis/prognosis/therapy)

University of Sofia St.Kl.Ohridski (BG) 
Faculty of Physics

extended expertise in detector development, 
firmware, experiment software in HEP

Polytechnic University of Bucharest (RO)
Department of Hydraulics, Hydraulic 
Equipment and Environmental Engineering

Complex Fluids and Microfluidics expertise: mucus/saliva rheology, 
reconstruction and simulation of respiratory airways, AI applications 
for airflow predictions in respiratory conducts

Istituto Superiore di Sanità

expertise in neural networks modeling, cortical network 
dynamics, theory inspired data analysis

University of Liverpool (UK)
Department of Physics

physics data analysis at hadron colliders experiments, 
simulation, ML and DL methods in HEP
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HEP Use-Cases

WP2: AI algorithms (CNN, autoencoder),  
successfully developed and applied to iden]fy pulses, 
determing amplitude and ]me of arrival  in close to 
reality simulated data of the PADME calorimeter

WP1:  developed AI algorithms (CNN,  Graph NN),  
targeted to event classification and process 
discrimination, for new physics  and dark matter 
searches at ATLAS. First review of suitable state-of-art xAI
algorithms performed

WP3: developed complete pipeline for an AI based event 
selection algorithm to expand physics potential of the ATLAS 
experiment.  CNN model with compression and simplification 
strategies to make easier to interpret, and faster to execute the 
AI model, for the conversion and implementation in the firmware 
of FPGA accelerators. Obtained CNN inference in 80/150ns/image

1

signal hits in the muon detector

• Accurately reconstruct the momentum and angle of the 
muon tracks from the detector hit information 


• Optimize Deep Convolutional Neural Networks with 
compression and simplification strategies to reduce the 
memory footprint of the model to fit FPGA requirements 
in terms of RAM and latency (<400ns / event)


• Use xAI techniques to understand CNN predictions and 
use it to optimise detector design and robustness 
against source of systematic uncertainties

ATLAS

muon 
pattern

noise
WP3: xAI IN ULTRAFAST 
AI INFERENCE IN HEP

muon 
particle

model 
compression

FPGA

Public report atlas-conf-2022-001

Eur. Phys. J. C 81,
969 (2021)
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MED and NS Use Cases
WP4: Implemented AI models for the brain lesion 
segmenta<on in the Brats17 MRI dataset 
(Unet2D, Resnet 3D). Data augmenta]on
techniques to enhance performances  tested.
Selected state-of the art xAI algorithms,
under implementa]on.

WP5: procedure for the realization of the prototypes of the trachea 
bifurcation (reconstruction of the geometry from the CT scan,
numerical code) completed. Study of the GNN model
for the simulation of the the air-flow

WP6: designed and realized a specific CNN (fed by 
electrophysiological signals) based on a 
ResNet to uncover an inner decision value increasing in
time as a linear ramp eventually allowing to predict at 

single-trial level the onset timing of overt movements. 
Test of various xAI algorithms underway

training influence
(gradient tracing)

"far" from

state-of-the-art 
xAI

saliency 
maps

GNN

Moebius®

Optimize GNN 
over information 
content

Multiphase 
viscoelastic fluid 

(Holroyd-B model)

Reaction 
Time (RT)

CNN

Saliency 
map (xAI)

Brats17
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(Vanilla) Saliency maps

A saliency map is an object of the same dimensionality as the 
input, providing information about which features were most 
important for a given prediction.
Formally (i is the index of the class of interest):

(Simonyan & al., 2013)

20
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Limits of saliency maps

Simple saliency maps have several issues that balances their 
simplicity:
1. They are highly unstable wrt small changes in the input.
2. They are not well localized.
3. They have no formal guarantees.

In particular, they do not respect a property called sensitivity: if two 
inputs differ for a single pixel but have different predictions, a 
saliency map is not guaranteed to highlight that pixel.
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Gradient Tracing

Consider an idealized training procedure where at iteration t we 
update the parameter vector as:

The influence of point z on point z’ is defined as:

(Pruthi & al., 2020)
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Gradient Tracing

By first-order approximation, it can be shown that:

(Pruthi & al., 2020)

This can be approximated by storing k checkpoints during 
training and computing:

24
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Datamodels

Denote by f(x;S) the output of a network f on x after training on a 
set of data S. A datamodel is a model trained to approximate this 
function on a fixed x.
Suppose we sample uniformly subsets of the original training set, 
and train different models:

(Ilyas & al., 2022)

26



Datamodels

In practice, we can train linear datamodels:
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Implementing datamodels
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