FASER

ForwArd Search ExpeRiment

Monica D'Onofrio, Carl Gwilliam, Lottie Cavanagh

20th May 2022 Liverpool HEP Annual meeting

FASER Experiment and Collaboration

- New LHC run-3 experiment located 480 m downstream of ATLAS in Ti12 side service tunnel
 - Along line-of-sight after LHC curves away behind 100 m rock \rightarrow low background rate

Physics Motivation

- Designed to search for light, weakly interacting particles (from IP1)
- pp \rightarrow LLP, LLP travels ~480m, LLP \rightarrow ee, $\gamma\gamma$, $\mu\mu$, ...
- Probes large range of BSM models that predict long-lived particles
 - Dark photons, ALPS, HNL, B-L
- Complementary to ATLAS/non-collider
 - Sensitivity to unique parameter space

- FASERNu adds neutrino program
 - First observation of collider neutrinos
- Cross-section measurement in E range from ~ 100 GeV to ~1 TeV
 - Unconstrained region of phase space

FASER Detector

Successfully Commissioned and Installed in Ti12

Further commissioning with cosmics and beam splashes / single beams

Calorimere

PREPARED FOR SUBMISSION TO JINST
©2021 CERN FOR THE BENEFIT OF THE FASER Collaboration.
Version 1

FASERnu

The FASER Detector

FASER Collaboration

Henso Abreu¹, Elham Amin Mansour², Claire Antel², Akitaka Ariga^{3,21}, Tomoko Ariga⁴ Florian Bernlochner⁵, Tobias Boeckh⁵, Jamie Boyd⁶, Lydia Brenner⁶, Franck Cadoux² David W. Casper⁷, Charlotte Cavanagh⁸, Xin Chen⁹, Andrea Coccaro¹⁰, Olivie Crespo-Lopez⁶, Stéphane Débieux², Sergey Dmitrievsky¹¹, Monica D'Onofrio⁸, Lian Dougherty⁶, Candan Dozen⁹ Abdallah Ezzat²³, Yannick Favre², Deion Fellers¹², Jonathan L. Feng⁷, Didier Ferrere², Edward Karl Galantay², Jonathan Gall⁶, Enrico erinl⁶, Stephen Gibson¹³, Sergio Gonzalez-Sevilla², Yuri Gornushkin¹¹, Carl Gwilliam⁸, Daiki Havakawa²¹, Shih-Chieh Hsu¹⁴, Zhen Hu⁹, Giuseppe lacobucci², ohiro Inada⁹, Sune Jakobsen⁶, Eliott Johnson², Enrique Kajomovitz¹, Felix Kling¹ Umut Kose⁶, Rafaella Kotitsa⁶, Jesse Krusse^{24,25}, Susanne Kuehn⁶, Helena Lefebyre¹³ Lorne Levinson¹⁶, Ke Li¹⁴, Jinfeng Liu⁹, Chiara Magliocca², Josh McFayden¹⁷, Sam Mechan⁶ Matteo Milanesio² Manato Miura²¹ Dimitar Mladenov⁶ Théo Moretti² Magdalena Munker² , Mitsuhiro Nakamura¹⁸ , Toshiyuki Nakano¹⁸ , Marzio Nessi^{6,2} , Friedemann Neuhaus¹⁹, Laurie Nevay¹³, Hidetoshi Otono⁴, John Osborne⁶, Carlo Pandini , Hao Pang⁹, Lorenzo Paolozzi^{6,2}, Brian Petersen⁶, Francesco Pietropaolo⁶, Markus Prim , Michaela Queitsch-Maitland⁶ , Filippo Resnatl⁶ , Chiara Rizzi² , Hiroki Rokujo¹⁸ , Elisa Ruiz-Choliz¹⁹, Jakob Salfeld-Nebgen⁶, Francisco Sanchez Galan⁶, Osamu Sato¹⁸, Paola Scampoli^{3,22}, Kristof Schmieden¹⁹, Matthias Schott¹⁹, Anna Sfyrla², Savannah Shively⁷ land Sipos⁶, John Spencer¹⁴, Yosuke Takubo²⁰, Noshin Tarannum², Ondrej Theiner² Pierre Thonet⁶, Eric Torrence¹², Serhan Tufanli⁶, Svetlana Vasina¹¹, Camille Ve Benedikt Vormwald⁶, Di Wang⁹, Stefano Zambito², Gang Zhang⁹

orr

¹Department of Physics and Astronomy, Technion—Israel Institute of Technology, Haifa 32000, Israel ²Département de Physique Nucléaire et Corpusculaire, University of Geneva, CH-1211 Geneva 4, Switzerland ³Altert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern,

- Sidlerstrasse 5, CH-3012 Bern, Switzerland
- ³² ⁴Kyushu University, Nishi-ku, 819-0395 Fukuoka, Japan

Detector paper being

finalised for publication

Monica is co-editor

- ³³ ⁵Universität Bonn, Regina-Pacis-Weg 3, D-53113 Bonn, Germany
- 34 6 CERN, CH-1211 Geneva 23, Switzerland
- ³⁵ ⁷Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, USA

EM Calorimeter and Test Beam

• Liverpool responsible for simulation and digitisation of ECAL

• 66 layers of lead-scintillator plates read by 2x2 array of PMTs

- Sim compares reasonably with data from recent Test Beam
 - Proposed by Liverpool amongst others

- Higher-order effects to be added from TB measurements
- See <u>Lottie's talk</u> yesterday for more details
- Test beam paper In preparation

- Implemented first version of digi
 - Now compare sim+digi to TB data

First 6.8 TeV Beam Data!

- FASER able to see particles from recent 6.8 TeV beam optics tests
 - First particles traversing full detector, including interface tracker
 - Of order 50 such events \rightarrow studying these in detail

Mock Data Challenge

- Physics Coordination structure set up in January 2022 and Carl appointed as Co-coordinator
 - Ensure timely, high-quality physics output that is well documented and reproducible
- Setup Mock Data Challenge (MDC) to ensure readiness for data-taking:
 - Test full production chain from generation all the way through to analysis
 - Exercise organisation structure and communication procedures
- Goal is to demonstrate end-to-end analysis workflow
 - Focus effort on finalising software \rightarrow significant progress
 - Determine readiness and uncover missing pieces
 - In addition, jump start analysis effort
- Representative signal and background processes have been generated
 - Currently undergoing simulation, digitisation and reconstruction
 - Analysis part starting imminently and will run till ~end of July

Rehearsal

Forward Physics Facility (FPF)

- Proposal to build a new dedicated forward physics facility
 - Hosting a suite of far-forward experiments at the HL-LHC

- Current planned detectors
- FASER2
 - FASER scaled to r=1m
 - Light dark sector parts.

• FASERnu2

- ~20t emulsion + tungsten detector
- Mainly v_{τ}
- AdvSND
 - Off axis v detector
 - Fwd charm + low-x gluon

FORMOSA

- Scintillating bars
- Millicharged particles
- FLArE
 - ~10t LAr TPC
 - DM + ν physics
- Detailed (429pp) paper submitted as part of Snowmass: <u>https://arxiv.org/abs/2203.05090</u>

FPF Physics

• Benefits from inc. HL-LHC lumi by allowing

- Longer detectors
 - Increased target/decay volume
- Wider detectors
 - Increased sensitivity to HF production
- New detectors
 - Complementary physics capabilities
- FPF has a rich + broad physics program
 - Across a variety of areas ...
- Main physics motivations
 - BSM dark sector searches
 - Neutrino physics
 - $\sim 10^5 v_e$, $10^6 v_{\mu}$, $10^3 v_{\tau}$
 - QCD physics

FASER(nu)2

• Conceptually a scaled up version of FASER2

- Veto: similar scintillator-based
- Magnets: Superconducting with B = 1 T
- Tracker: much larger \rightarrow considering SiFi/SiPM
- Calo/Muon: enhanced PID & position resolution

• Wider LLP physics program

• Probing up to higher mass

Benchmark Model	FASER	FASER 2
Dark Photons		√
B - L Gauge Bosons	\checkmark	\checkmark
$L_i - L_j$ Gauge Bosons		
Dark Higgs Bosons	—	\checkmark
Dark Higgs Bosons with hSS	—	\sim
HNLs with e	—	√
HNLs with μ	-	√ √
HNLs with τ	\checkmark	\checkmark
ALPs with Photon	√	√
ALPs with Fermion	_	\checkmark
ALPs with Gluon	\checkmark	\checkmark
Dark Pseudoscalars		√

Summary + Outlook

- FASER detector successfully commissioned and installed in TI12 ready for run-3
 - Already observed high-energy first collision events passing through full detector
- Currently finalising and validating software in readiness for imminent data taking
 - Dedicated Mock Data Challenge
- Liverpool have played a major role across the collaboration
 - Simulation and digitisation for ECAL
 - Analysing test beam data

- Detector paper editor
- Physics coordination
- Well placed to make the most of first data-taking
 - Expect to probe new ground already with 2022 data
 - Planning for first results at conferences next year

- In the longer term, proposal for dedicated forward physics facility
 - If approved, we are interested in detector development towards FASER2 and FASERnu2