

DUNE @ Oliver Lodge

Marco Roda, Christos Touramanis, et al.

20 May 2022 (Christmas) HEP meeting

Overview

- Intense (anti-)neutrino beam
 - From Fermilab to SURF about 1300 Km
 - Multiple physics goals
 - CP violation in the lepton sector
 - Precision tests of the 3-neutrino paradigm
 - Proton decay, neutrinos from supernovae
 - BSM
- 4 caverns housing 10 Kt LAr TPCs
 - 3D imaging bubble chamber quality
 - energy measurements capability
 - two types of modules
 - horizontal drift
 - vertical drift (No liverpool involvement)
 - integrated photon readout
- The collaboration
 - 1,500 collaborators
 - about 200 institutes from 32 countries
 - UKRI 65 M project:
 - APAs, DAQ, PIP-II cryomodules, proton target
- ProtoDUNE
 - Test beam facility at CERN
 - Took beam data in 2018
 - ProtoDUNE-II being installed for data taking in 2022-23

Physics program

- Standard Oscillation framework
 - Enough to be able to resolve mass hierarchy and measure CP violation
 - Possibly with 5 sigma significance depending on the value
- BSM
 - proton decay in the $p \rightarrow K^+$
 - neutrino anomalies
- Supernova neutrinos
- ProtoDUNE
 - 4 papers in preparation from 2018 test beam Argon cross sections
 - Pion absorption and charge exchange
 - Neutron
 - Kaon
 - O(10) analyses ongoing
 - Plus performance and detector papers

Latest news from the ongoing Collaboration Meeting @ FNAL

- DUNE baseline (phase I):
 - 2 FD modules, 3-system ND, 1.2MW
 - FD1: Single Phase, Horizontal Drift
 - we make the APAs for it
 - FD2: Single Phase, Vertical Drift
 - no UK involvement in the hardware
 - ND: LAr TPC,
 - muon spectrometer, SAND (on-axis detector and beam monitor)
 - DOE review (CD1-RR) in July
 - Physics start in 2028
 - atmospheric and supernova neutrinos, proton decay
 - Near Detector completion: 2031
 - First beam 2031: start of long baseline physics
- Phase II additions
 - FD modules 3,4; Gas Argon TPC in ND; 2.4MW
- Excavation at Far Site progressing well
- APA production for FD1 started at Daresbury

People

APA

- Christos Touramanis: APA consortium leader
- Dave Payne: quality control & surveys
- Krish Majumdar: APA consortium hardware database development
- Peter Cooke (replacing P. Sutcliffe): APA frames production; APA Shipping Frames engineer
- George Stavrakis: ASF design
- Mechanical Workshop: manufacturer of APA wiring heads, other bespoke items
- Dave Sim, Tony Watling, Matt Brown: APA production team

DAQ

- Marco Roda: Core SW, CCM monitoring
- Carlos Chavez: unit-tests, CCM control
- Adam Abed Abud (student): Dataflow

Anode Plane Assembly

Major achievements in 2021

- Final Design Review: September 2021
- Production Readiness Review: February 2022
- 1st APA made at Daresbury and tested at CERN (Oct-Dec 2021)
- 3 more APAs for ProtoDUNE-II: 2 at CERN, 1 in construction at Daresbury
- Currently preparing APAs for ProtoDUNE II at CERN (Matt Brown)
- First FD APA: starting at Daresbury
 - \circ 150 APAs to be made in total
- Production to continue until end 2026
- APA Shiping Frame:
 - 2 prototypes made by DSM, delivered to CERN
 - 1 prototype made at CERN, now at PK Marine (Liverpool) loaded with ProtoDUNE APAs, to be transported to Fermilab, then SURF to go underground as part of a full transportation cycle test

APA Factory at Daresbury (photo from PRR)

APA 1 tests at CERN (Oct.-Dec. 2021)

APA Shipping Frame

CERN

PK Marine (Liverpool)

APA frame QC with laser trackers (David Payne)

David's shoulder

picturetaken at DSM (the frame manufacturer) in South Sheilds

DAQ

The DUNE DAQ

- Distributed system with 4 main components
 - Distream DAQ
 - based on FELIX technology
 - combination of firmware and dedicated servers
 - Stores data streams from the hardware waiting for requests
 - It generate Trigger primitives to be send to
 - Trigger and data selection
 - Mostly software based
 - Analyses TP and generate Trigger Decision
 - DataFlow
 - Move data between the applications
 - Constructs Trigger Records (events) and writing on disk
 - CCM Configuration, Control and Monitoring
 - Pervasive system part of the core software design
 - Dedicated apps for data quality monitoring at many levels
- Very low dead time required
 - Due to supernova neutrinos searches
- Some numbers
 - \circ ~ each FD module expected to produce about 1.5 TB/s ~
 - O(1K) applications at the far detector site
 - plus a number of services and databases
- Same infrastructure to be used for ND and FDs
 - And for ProtoDUNE II

Liverpool contributions

- Present from the very beginning of the DAQ construction (Spring 2020)
 - Design and implementation of the core framework
 - Development of the event building applications and many other initial components (Marco)
 - Integration test infrastructure (Carlos)
 - ...but UK interest has now shifted
 - Dataflow (or core SW) moved mostly to the US
 - UK involvement is in CCM (Liverpool and others) and Trigger
- Run control at DUNE DAQ (Carlos)
 - Python based run control configuration and maintenance work
 - Software developments to handle multiple partitions and related configuration changes
- Monitoring (Marco)
 - Based on a number of databases (kafka, influxDB) to store the data and then plotted using grafana dashboards
 - C++ code specific for every module are used to generate the data inside the applications
 - Eventually we will add a supervisor system that will be able to automatically operate some automatic recovery actions

Liverpool contributions (cont)

<u>Kubernetes</u> based DUNE DAQ

- almost zero deadtime and long time run has some impact on the technology
 - Containers will help us to decouple our system from the nuisances of OS evolution, etc
 - Allow respawning applications
- Working on implementing K8s cluster to run DAQ applications processes (Carlos)
- Integration with nanoRC and configuration development between k8s and nanoRC (Carlos)
- Moving all the services required for monitoring infrastructure into K8s pods and services (Marco)

Configurations

- Configurations are generated using dedicated applications
- We recently changed the way we send data between applications
 - All the configuration generation had to be updated according to the new system (Carlos)

Current DAQ activities

- You have seen the development work
 - The system is currently exercised with cold box tests
- Coldbox tests at CERN at the beginning of the year
- In total four new APAs to be tested
 - One APA already tested
 - Job completed by the summer
- Of course beam data in late autumn

Summary

- Despite COVID, things are progressing well

 Many Liverpool contributions in key roles
- APA production started at Daresbury

- DAQ in development, successfully tested for Coldbox tests
- We are about to start publishing physics papers from data
- Many other activities are ongoing but Liverpool is not involved