

The LEGEND Experiment

Particle Physics Annual Meeting May 2022

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

University of Liverpool, University College London, Lancaster University, University of Warwick

Overview of the presentation

- Status of the LEGEND experiment
- LEGEND 1000
- The UK contribution to LEGEND
- The UK funding situation and future plans

Introduction to LEGEND

- The LEGEND collaboration proposes a 0vββ decay search experiment, using a 1 tonne of ⁷⁶Ge enriched detectors
- The programme follows a staged approach:
 - LEGEND-200: a 200 kg mass experiment, installed in the GERDA LAr cryostat at LNGS, Gran Sasso
 - It is an approved experiment at LNGS, with first commissioning in progress
 - LEGEND-1000: a 1T experiment will require a new underground infrastructure and additional R&D to further reduce backgrounds
 - LEGEND-1000 to start running later this decade

LEGEND 200 Overview

- A merger of the GERDA and MJD demonstrators @LNGS
- Re-use GERDA LAr cryostat: optimise geometry
- Low-background MJD front-end electronics, further from detectors
- Refinements to:
 - Veto system
 - Calibration systems
 - DAQ
- Trial PEN
- Installation in progress
- STFC Experiment support for M&O

New detectors for LEGEND: P-type Inverted-Coaxial Point Contact Larger mass : > 2 kg/detector

The LEGEND-1000 Discovery Sensitivity

"The collaboration aims to develop a phased, ⁷⁶Ge-based double-beta decay experimental program with <u>discovery potential</u> at a half-life beyond 10²⁸ years..."

- What is required for a discovery of $0\nu\beta\beta$ decay at a half-life of 10^{28} years?
- This is less than one decay per year per ton of material
 - Need 10 ton-years of data to get a few counts
 - Need a good signal-to-background ratio to get statistical significance
 - A very low background event rate
 - The best possible energy resolution

Innovation toward LEGEND-1000: enrGe Detectors

- Superb energy resolution: $\sigma / Q_{\beta\beta} = 0.05 \%$
- P-type detectors: Insensitive to alphas on n⁺ outer contact
- Pulse-shape discrimination against background events
- Large-mass ICPC detectors: About 4 times lower backgrounds compared to BEGes / PPCs
- Proven long-term stable operation in LAr

The LEGEND-1000 Experiment: Overview

1000 kg of enriched Ge detectors (92% ⁷⁶Ge)

- 2.6 kg average mass
- Mounted in "strings" using components made from electro-formed Cu and scintillating plastic, PEN

ICPC Ge Detector

- Arranged in 4 modules
- ~100 detectors per module

- Underground-sourced LAr active shield
- Dual fiber-curtain LAr instrumentation
- EFCu Reentrant tubes

LEGEND-1000 Baseline Design: Underground Site

- A deep-underground site is needed to shield the experiment from backgrounds generated by cosmic rays
- Baseline site: The SNOLAB "Cryopit"
 - 2 km underground (6000m water equivalent)
 - In an active nickel mine in Sudbury, Ontario
 - Vertical access through mine shaft
- Alternative site: LNGS (Italy)
 - 3500m water equivalent depth
 - Lower overburden somewhat increases background
 - Horizontal access reduces cost/schedule risk
- Staff at both sites are actively involved in planning
- We are currently assuming that we need to carry both sites forward through CD-1

The Portfolio Review

• The U.S. DOE Office of Nuclear Physics has adopted as part of its mission the building of a tonscale neutrinoless double beta decay experiment.

• Timeline:

- April 2016: LEGEND Collaboration formed
- Nov 2018: Approval of generic ton-scale CD-0 ("Mission Need")
- Dec 2019: ORNL selected as U.S. Lead Lab for LEGEND
- Nov 2020: DOE-NP announces a "DBD portfolio review exercise ... to inform U.S. investment strategy"
- 18 April 2021: DOE instructions and charge received
- 1 June 2021: Proposal submitted to DOE-NP
- 13-16 July 2021: DOE-NP Portfolio Review of three experiments: LEGEND-1000, nEXO, CUPID
- LEGEND performed exceedingly well, and emerged as the unambiguous leader
 - DOE-NP has however stated that all three experiments were found to be worthy of support, and they would like to support a "DBD programmatic effort" if sufficient funding can be made available
- LEGEND-1000 is now being supported by DOE-NP to proceed to the next step, "CD-1", as a "DOE Order 413.3b Project"

DOE Scope and Cost

New cost and schedule currently being developed

- Total DOE cost point estimate is \$257M
 - Includes 56% contingency
 - Assumes technically driven funding profile
- Anticipated DOE Project scope is 60% of the total (\$442M)
 - Total scope estimate uses DOE accounting; fully burdened, escalated costs with 50% contingency
- International collaborators intend to contribute the remaining 40%
- Raw cost (unburdened procurements only) for that remaining scope is \$51M

Notional Technically Driven Schedule

- Assumes technically driven funding profile
- Key Dates:
 - CD-1:
 - Module 1 Commissioning Complete:
 - Early Finish: Module 4 Commissioning Complete:
 - Late Finish (36 months of float): Q2 FY33 125 months

Q4 FY22

Q3 FY28 69 months (relative to CD-1)

Q2 FY30 89 months

LEGEND the UK contribution

- Funded through an STFC PPRP Opportunities project (Q1 2020 Q4 2021):
 - WP1 HPGe Characterisation and Technology Development
 - WP2 Simulation Studies for Tonne-Scale 0vββ Experiments
 - WP3 Radio-purity Assay Campaign for LEGEND
 - WP4 Novel Scintillating Material Development for LEGEND
- LEGEND-design HPGe detectors have a broad range of applications (environmental monitoring, ²¹⁰Pb dating, nuclear decommissioning) Working in collaboration with Mirion Technologies

Proposed new detectors for LEGEND: P-type Inverted-Coaxial Point Contact Larger mass : > 2 kg/detector $\int e^{recreation} e^{r$

(1)

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

LEGEND the UK contribution

- Funded through an STFC PPRP Opportunities project (Q1 2020 Q4 2021):
 - WP1 HPGe Characterisation and Technology Development
 - WP2 Simulation Studies for Tonne-Scale 0vββ Experiments
 - WP3 Radio-purity Assay Campaign for LEGEND
 - WP4 Novel Scintillating Material Development for LEGEND
- LEGEND-design HPGe detectors have a broad range of applications (environmental monitoring, ²¹⁰Pb dating, nuclear decommissioning) Working in collaboration with Mirion Technologies

LEGEND UK Leadership and Liverpool contribution

- LEGEND Collaboration formed in 2016
 - A. Boston detector coordinator 2017-2018, UK PI
 - D. Waters/R. Saakyan IB chair
 - M. Agostini analysis coordinator (current)
 - D. Muenstermann PEN-Veto coordinator (current)
- Liverpool
 - Germanium detector characterisation
 - Detector calibration/data quality enhancement
 - Data taking in LEGEND-200
 - Detector procurement and characterisation for LEGEND-1000

SOI for LEGEND 1000 project

- A joint effort of nuclear and particle community along with industrial partners with a 2023/24 start for:
 - Contributing to enriched Ge and detector production
 - HPGe Detector Development & Characterisation
 - Material Screening & Assays Boulby Underground Laboratory
 - Active Veto Liquid Argon Detectors
 - Software & Analysis
 - Design, test and build large hardware items
- Industrial requirements for improved gamma-ray detector performance
- The UK has the opportunity to play a leading role in a global next generation experiment.
- Ambition for an equal UK, Italian and German contribution.

LEGEND UK future plans

- Open UK LEGEND meeting March 2022
- SOI for LEGEND 1000 construction Q4 2022
- Request to PPRP 2023
- Ideal project start date in 2024
- For the future project Liverpool will:
 - Design and deliver multiple detector characterisation stands for installation at Boubly
 - Characterise inverted coaxial germanium detectors
 - Optimise the analysis algorithms and analyse the characterisation data

The LEGEND Experiment

Particle Physics Annual Meeting May 2022

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

University of Liverpool, University College London, Lancaster University, University of Warwick