High Mass Drell-Yan measurements at ATLAS using Run 2 data

Samuel Alibocus Supervised by: Uta Klein, Max Klein and Jan Kretzschmar

University of Liverpool

May 18, 2022

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

High Mass Drell-Yan

- My focus is making cross section measurements of the charged current Drell-Yan (CCDY) process in the *e* and μ channel.
- Search for W' has been carried out with Run 2 data [1] using m_T^W where, $m_T^W = \sqrt{2p_T E_T^{miss}(1 - \cos \Delta \phi_{l,\nu})}$
- No new resonances found so now we make precision measurements of Standard Model.
- This measurement has not before been made at this m_T^W range.
- Cross sections of both e and μ channels can be measured and

compared to test lepton universality.

[1] The ATLAS Collaboration, 2019. Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. Physical Review D₁100(5)

Event Selection

• Fiducial phase space region used for both channels:

- $p_T > 65 \text{ GeV}$
- $E_T^{miss} > 85 \text{ GeV}$
- $m_T^W > 200 \text{ GeV}$
- $|\eta_{\ell}| < 2.4$
- As the neutrino cannot be directly measured, m_T^W > is used, rather than the invariant mass.
- The following samples are used in the final measurement:
 - Data 2015/2016 (36.2 fb⁻¹)
 - Data 2017 (44.3 *fb*⁻¹)
 - Data 2018 (58.5 fb⁻¹) and the corresponding simulation campaigns per year.
- Overall integrated luminosity is 139 fb^{-1} .

HMDY - Muon channel sagitta bias corrections

- To measure p_T of muon we measure its sagitta using inner detector and the muon spectrometer.
- Precision needs to be of a few 10µm, compared to detector diameter of 25m.
- Changes in temperature and magnetic field can warp the geometry of the detector [2].
- Large effect at high m_T^W .
- Plot shows corrected/uncorrected data.

[2] The ATLAS Collaboration, 2020. Alignment of the ATLAS Inner Detector in Run 2. The European Physical Journal C, 80(12).

HMDY - Background samples

- Background signals contribute \sim 30% to total events.
- Most significant background is from top $(t\bar{t} \text{ and single top})$.
- The multijet background is a data driven estimate and has been derived by an ATLAS colleague for μ channel.
- Following background samples are considered in this analysis, where percentage is the contribution to the total background:

Process	Contribution	Colour
Тор	48.2%	
$Z ightarrow \ell^+ \ell^-$	23.7%	
Multijet	18.5%	
Diboson	5.8%	
$W \to \tau \nu$	3.4%	
$Z \to \tau \tau$	0.4%	

HMDY m_T control plots - ℓ^+ selection

- Control plots showing both data taken during 2018 and corresponding simulated MC signal and backgrounds.
- A very large m_T range is covered from 150 GeV to 5 TeV.

HMDY m_T control plots - ℓ^- selection

- Control plots showing both data taken during 2018 and corresponding simulated MC signal and backgrounds.
- A very large m_T range is covered from 150 GeV to 5 TeV.

Z-Counting

- LUCID luminosity measurement taken yearly.
- The number of $Z \to \ell^+ \ell^-$ events can be used to calculate the luminosity, $\mathcal{L}_Z = N_Z / \sigma_Z$.
- Continuous luminosity measurements provided by Z-Counting provides additional checks for understanding time and pileup dependence of the ATLAS baseline measurement.
- Liverpool led Z-Counting team then compares with the ATLAS baseline luminosity measurement [3].

[3] The ATLAS Collaboration, 2021. Luminosity monitoring using $Z \to l^+ l^-$ events at $\sqrt{13}$ TeV with the ATLAS detector. ATLAS PUB Note.

Z-Counting - ATLAS service task

- My service task is to update the Z-Counting analysis framework to ATLAS software framework called Release 22.
- Allows for comparisons with CMS using $Z \rightarrow \mu \mu$ events.
- High priority task for Run 3 .
- New version (rel 22) supports multithreading, reducing memory usage [4].

[4] The ATLAS Collaboration, 2022. Teaching established software new tricks. [online] Available at: <hr/>
<h

Conclusion and outlook

HMDY:

- Similar data/MC trend between e and μ channels up to m_T^W of 1 TeV and good agreement between data/MC up to higher m_T^W .
- Investigate control regions to understand background and perform new multijet background estimate for *e* channel (written by Michael O'Keefe).
- Need to add systematics and unfold the cross section.
- Starting LTA at CERN in July.
- Will be taking data quality shifts in ATLAS control room.

Z-Counting:

- Updating one tool at a time and testing using a small sample file.
- Once the whole Z-Counting framework moved to Release 22, we can compare the Run 3 luminosity measurements with CMS.