

Towards First Data from FASER: Simulation to Electromagnetic Calorimeter Test Beam Studies

Liverpool HEP Meeting 19th – 20th May 2022

Lottie Cavanagh

Supervisors: Monica D'Onofrio Carl Gwilliam

FASER: Introduction

- FASER CERN
- There is evidence to suggest the existence of Dark Sectors which may contain new, light, weakly-coupled particles that interact only very weakly with ordinary matter
- FASER is designed to detect potentially long-lived particles (LLPs) produced at the ATLAS Interaction Point in the forward region $pp \rightarrow \text{LLP} + X$, LLP travels $\sim 480 \text{ m}$, LLP $\rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-, \gamma\gamma, \dots$

Current Status

My presentation last year gave details of the simulation studies in the TI12 geometry

- Simulation based on the Geant4
- Before we were able to validate with our own test beam, the simulation was based on LHCb test beam results
- Various additions and corrections were studied in order to find the "best" setup

Since last summer's test beam, focus has been on simulation and analysis of this data

- A dedicated framework was developed for the test beam simulation
- So far more than 2 million events have been simulated in the test beam geometry that mimic test beam runs
- Reconstruction and digitization steps are being finalised

Now we are shifting to preparations for Run 3 data taking

- Return to TI12 geometry, generate realistic signal samples
- See Carl's talk for details of Mock Data Challenge

The 2021 FASER Calorimeter Test Beam

CERN H2 beam line 28th July – 4th August 2021

The aims of the test beam were to:

- Calibrate the calorimeter and preshower modules
- Study electron response
- Perform muon response to study uniformity of MIP response
- Perform pion scan to study hadronic response

Light collection improves when near a fibre

Calorimeter Studies: Local Effects and Corrections

- This effect is at a similar scale to what LHCb saw in their studies
- This is not currently implemented in simulation
 - Can now add this to simulation based on measurements in data

Preshower Correction

WLS Fibre effects

- The preshower steals a portion of the EM • shower from the calorimeter
- This needs to be corrected for on an event by event level
- This has now been applied to the simulation

 $m = slope of Q_{preshower} vs Q_{calo} plot$

 $Q_{corrected} = Q_{calo} + m * Q_{preshower}$

Preshower correction

52

LHCb

Q (pC) Preshower Tot

Data and Simulation

- Comparing energy resolution of corrected data measurements with corrected simulation
- Aim to fully understand the differences
 - Some effects aren't yet implemented in simulation

$\sigma_E/E = a/\sqrt{E} \oplus b/E \oplus c$				
	a	b	с	
Data (Corrected)	0.134	0.151	0.0065	
Data	0.196	0.151	0.0057	
Simulation (Corrected)	0.093 ± 0.003	-	0.0000 ± 0.0004	
Simulation	0.135 ± 0.001	-	0.0000 ± 0.0017	
LHCb	0.094 ± 0.004	0.108 ± 0.029	0.0083 ± 0.0002	

- A noise term (b/E) improves the fit in the case of data
 - Calculated from the measured noise of digitizer signal using the same data being studied at the moment
- The simulation does not have a way to replicate the value of the constant (c) term
 - 1% was chosen to study the impact on the resolution fit on plot
 - Brings tail end of distribution higher, towards data and LHCb's measurement

Outlook

FASER CERN

- Test Beam
 - We saw efficient data taking with good overall beam quality and purity
 - Most of FASER's physics signal will be at energies above the test beam, the resolution that we see in data and simulation is more than sufficient for what we need
- Simulation and Analysis
 - The plan moves towards simulating more realistic signal samples to prepare for dark photon analysis
 - The mock data challenge will ensure FASER is prepared for data taking
- Detector once again situated in TI12, Run 3 data taking has started and we have first results!
- I have presented preliminary results at IoP and CALOR22 conferences
- Now starting to work on preparation for real data analysis which will focus on searches for dark photons
- Will hopefully start my LTA at CERN in October

Thanks!

Background (beam) muon traversing the full FASER detector and leaving signals in all detector systems:

Backup Slides

Test Beam Overview

Over 150 million events (1.8 TB) recorded, scanning through 24 spatial points across 6 ECAL modules

- Electron, μ -, π beams at different energies and settings
- Low, medium and high calo PMT gain settings
 - Gain offsets: 0 V 500 V in 50 V steps

Some runs were performed under special conditions:

- Removal of optical filters in the calo
- Removal of preshower material

Electron beam ▶ 12 energies: 5 - 300 GeV ▶ Primarily used 30, 75 and 200 GeV

Muon beam → 200 GeV → Large beam size (> 5 cm)

Test Beam Simulation: Preshower Correction

Events

Preshower correction m = -1.11

Ecorrected = Ecalo + m*Epreshower

- We can also apply a preshower correction to the simulation
- Changes distribution
- Important note: simulation gives deposited energy rather than deposited charge

Test Beam Simulation: Preshower Material

- Some test beam runs were performed with the preshower material (tungsten/graphite blocks) removed
- This was also carried out in simulation, and the change in edep % was studied
- We can compare with results from preshower correction

This was validated by data:

	With Preshower	W and C removed	With Preshower + correction
Resolution (30 GeV)	3.76 ± 0.03 %	2.84 ± 0.02 %	2.88 ± 0.02 %
Resolution (200 GeV)	1.89 ± 0.01 %	1.67 ± 0.01 %	1.66 ± 0.01 %