The LHCb Verification Framework for the MightyPix

Sigrid Scherl
sscherl@hep.ph.liv.ac.uk

Supervisors: Dr Eva Vilella (UoL)
Prof Ivan Perić (KIT)
Dr Karol Hennessy (UoL/CERN)

19/05/2022
The Mighty Tracker at LHCb

- Proposed hybrid tracker composed of...
- **Scintillating Fibre Tracker (SciFi)**
 - Scintillating fibres with SiPM readout
 - Installed in LS2, replacements in LS3
- **Inner Tracker (IT) and Middle Tracker (MT)**
 - Installation planned for LS3 and LS4
 - Silicon sensors meet requirements of radiation hardness and granularity
 \Rightarrow HV-CMOS pixel chip **MightyPix**
The Mighty Tracker at LHCb

- Proposed hybrid tracker composed of...
- **Scintillating Fibre Tracker (SciFi)**
 - Scintillating fibres with SiPM readout
 - Installed in LS2, replacements in LS3

- **Inner Tracker (IT) and Middle Tracker (MT)**
 - Installation planned for LS3 and LS4
 - Silicon sensors meet requirements of radiation hardness and granularity
 - HV-CMOS pixel chip **MightyPix**

→ Part of next big upgrade to LHCb!
The MightyPix

- HV-CMOS pixel chip for the Mighty Tracker
- Current prototype **MightyPix1** submitted this month
 - ¼ size of final MightyPix → full column length, reduced width
 - Chip size: ~2 cm × 0.5 cm
 - Pixel size: 165 µm × 55 µm
 - 29 columns, 320 rows
- First prototype compatible with LHCb readout system
The Verification Framework for MightyPix

• Chip designers test general features, but new to LHCb
• Verification Framework to test MightyPix within LHCb environment

• Current focus: Test MightyPix with LHCb simulation data
Simulation Data Studies: Overview

- Check MightyPix can handle hit rate
- Expected rate:
 - 1.7 hits per event and 2 cm × 2 cm chip in hottest region of Mighty Tracker
 - Add additional 5% of clusters with two pixels
- Simulation data:
 - Old SciFi geometry
 - University of Zürich LHCb Group
Simulation Data Studies: Method

Data transformation:
- Set chip/pixel size
- Set hit rate
- Omit secondaries?
- Additional cluster hits?
- Transform to pixel coordinates

Model of pixel matrix

Data comparison:
- Results file
- Various plots

* Developed by Nicolas Striebig at KIT
Simulation Data Studies: Method

Data transformation:
- Set chip/pixel size
- Set hit rate
- Omit secondaries?
- Additional cluster hits?
- Transform to pixel coordinates

Model of pixel matrix

Data comparison:
- Results file
- Various plots

Analysis results:
- Simulated hits: 1000
- Measured hits: Few
- Wrong time stamp: Loads
- Missing hits: Too many

* Developed by Nicolas Striebig at KIT
Simulation Data Studies: Method

Data transformation:
- Set chip/pixel size
- Set hit rate
- Omit secondaries?
- Additional cluster hits?
- Transform to pixel coordinates

Data comparison:
- Results file
- Various plots

Analysis results:
- Simulated hits: 1000
- Measured hits: Few
- Wrong time stamp: Loads
- Missing hits: Too many

* Developed by Nicolas Striebig at KIT
Simulation Data Studies: Method

Data transformation:
- Set chip/pixel size
- Set hit rate
- Omit secondaries?
- Additional cluster hits?
- Transform to pixel coordinates

Model of pixel matrix

Data comparison:
- Results file
- Various plots

Analysis results:
- Simulated hits: 1000
- Measured hits: Most
- Wrong time stamp: None
- Missing hits: Few

* Developed by Nicolas Striebig at KIT
Simulation Data Studies: Results

<table>
<thead>
<tr>
<th>Readout Speed</th>
<th>40 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clusters</td>
<td>No</td>
</tr>
<tr>
<td>Hit Rate</td>
<td>Single</td>
</tr>
<tr>
<td>Simulated Hits</td>
<td>1166 (100%)</td>
</tr>
<tr>
<td>Missing Hits</td>
<td>9 (0.77%)</td>
</tr>
</tbody>
</table>

Single hit rate: 1.7 hits per event and 2 cm × 2 cm chip → what we expect
Double hit rate: 3.4 hits per event and 2 cm × 2 cm chip → twice what we expect
Simulation Data Studies: Results

What about clusters? → Two neighbouring pixels hit at same time

<table>
<thead>
<tr>
<th>Readout Speed</th>
<th>40 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clusters</td>
<td>No</td>
</tr>
<tr>
<td>Hit Rate</td>
<td>Single</td>
</tr>
<tr>
<td>Simulated Hits</td>
<td>1166 (100%)</td>
</tr>
<tr>
<td>Missing Hits</td>
<td>9 (0.77%)</td>
</tr>
</tbody>
</table>

Single hit rate: 1.7 hits per event and 2 cm × 2 cm chip → what we expect

Double hit rate: 3.4 hits per event and 2 cm × 2 cm chip → twice what we expect
Simulation Data Studies: Results

What about clusters? → Two neighbouring pixels hit at same time

<table>
<thead>
<tr>
<th>Readout Speed</th>
<th>40 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clusters</td>
<td>No</td>
</tr>
<tr>
<td>Hit Rate</td>
<td>Single</td>
</tr>
<tr>
<td>Simulated Hits</td>
<td>1166 (100%)</td>
</tr>
<tr>
<td>Missing Hits</td>
<td>9 (0.77%)</td>
</tr>
</tbody>
</table>

Single hit rate: 1.7 hits per event and 2 cm × 2 cm chip → what we expect
Double hit rate: 3.4 hits per event and 2 cm × 2 cm chip → twice what we expect
Simulation Data Studies: Results

Missing hits fall into dead time of previous hit → Let’s up the readout speed

<table>
<thead>
<tr>
<th>Readout Speed</th>
<th>40 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clusters</td>
<td>No</td>
</tr>
<tr>
<td>Hit Rate</td>
<td>Single</td>
</tr>
<tr>
<td>Simulated Hits</td>
<td>1166 (100%)</td>
</tr>
<tr>
<td>Missing Hits</td>
<td>9 (0.77%)</td>
</tr>
</tbody>
</table>

Single hit rate: 1.7 hits per event and 2 cm × 2 cm chip → what we expect
Double hit rate: 3.4 hits per event and 2 cm × 2 cm chip → twice what we expect
Simulation Data Studies: Results

Missing hits fall into dead time of previous hit → Let’s up the readout speed

<table>
<thead>
<tr>
<th>Readout Speed</th>
<th>40 MHz</th>
<th>160 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clusters</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Hit Rate</td>
<td>Single</td>
<td>Double</td>
</tr>
<tr>
<td>Simulated Hits</td>
<td>1166 (100%)</td>
<td>2322 (100%)</td>
</tr>
<tr>
<td>Missing Hits</td>
<td>9 (0.77%)</td>
<td>105 (4.52%)</td>
</tr>
</tbody>
</table>

Single hit rate: 1.7 hits per event and 2 cm × 2 cm chip → what we expect
Double hit rate: 3.4 hits per event and 2 cm × 2 cm chip → twice what we expect
My further Plans

• **Verification framework** is ongoing project for all future MightyPix prototypes
 → Structure set up, first tests done

• **Test beam analysis**
 → test beam at DESY in June to study related chip ATLASpix3 as preparation for MightyPix
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Simulation Data Studies</th>
<th>Outlook</th>
</tr>
</thead>
</table>

Backup
Missing Hits in the Pixel Matrix

- Each pixel has one hit buffer
- Columns scanned left to right and hit info loaded to EoC for each hit buffer
- If readout takes too long and next hit already occurs before readout it will be missed