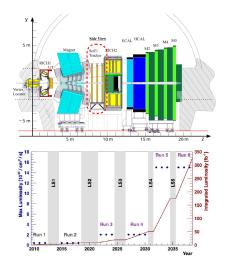
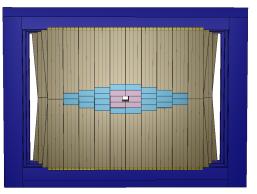
Studies of irradiated ATLASpix3.1 sensors for the LHCb MightyTracker

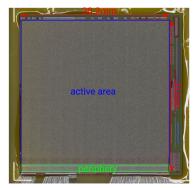

Jan Hammerich Supervisors: Eva Vilella, Joost Vossebeld

20/05/22

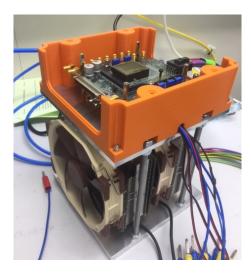

Introduction

- LHCb luminosity will be increased to $1.5\times10^{34}\,\text{cm}^{-2}\,\text{s}^{-1}$ for Run 5
- $\rightarrow\,$ Upgrades for the detector systems are required
 - Scintillating Fibre Tracker (SciFi) can't cope with the luminosity
 - Occupancy too high for tracking
 - Radiation damage destroys the fibres

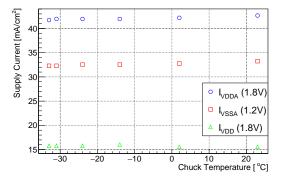
Mighty Tracker


- Proposal: replace innermost part of the fibres with silicon
- Pinkish area for Run 4 and blue area for Run 5
- Technology: HV-CMOS MAPS
 - Cheap and can be very thin
 - Shown suitable radiation hardness
- Dedicated MightyPix sensor R&D
- First version submitted last week

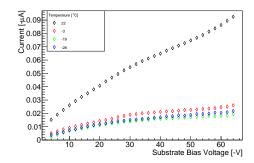
Requirements:

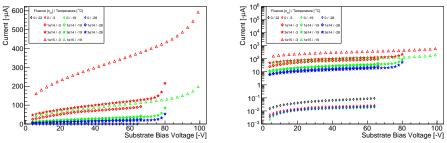

- $\bullet\,$ Rad hard up to $\gtrsim 1\times 10^{15}n_{eq}/cm^2$
- In-time efficiency > 99%

- Full reticle demonstrator for ATLAS ITk in TSI 180 nm HV-CMOS
- 20.2 mm × 21 mm
- 132×372 pixel with 150 $\mu m\times50\,\mu m$
- Similar analogue front-end architecture as MightyPix
- → Use existing prototype to get an idea for performance, power, and cooling requirements
 - \bullet Irradiated up to $3\times 10^{15} n_{eq}/cm^2$


Setup @ University of Liverpool

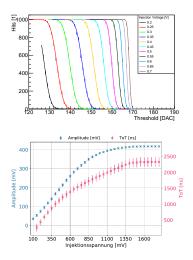
- Cooling setup developed @ UoL
- Cooling of the backside of the sensor with a Peltier to $-30\,^\circ\text{C}$
- Flushed with dry nitrogen
- Temperature and humidity measurement with Arduinos


- Important for powering and cooling scheme
- Normalised to total chip surface
- No significant effects observed
- \rightarrow No major shift in performance expected
 - Higher irradiated sensors require more power due to shifts in working points

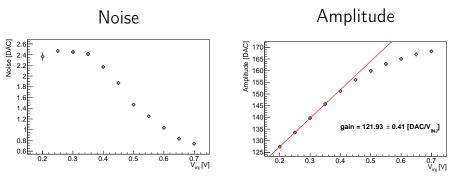


 $0n_{eq}/cm^2$

- Large leakage current induces more noise
- - Breakdown at -65 V
 - Reduction below -19°C small



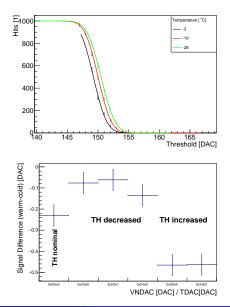
- Expected large current increase (expected)
- Increase in breakdown voltage with fluence (also expected)
- Reduction below $-19\,^{\circ}\text{C}$ small


Analogue Performance

- Find linear region to characterise temperature dependence
- Inject signals and count the number of observed hits at different Thresholds
- Saturation effects clearly visible (MIP \gtrapprox 0.8 V)
- AP3.1 seems to saturate much earlier than AP3.0
- Expected as signals are larger due to reduced detector capacitance

credit: BA thesis Lukas Mandok (Uni Heidelberg)

Noise and Gain

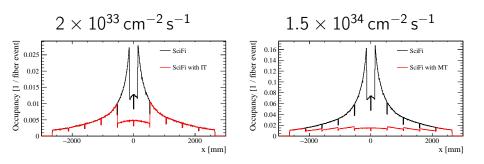


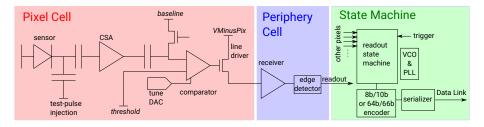
• S-curve described by
$$N(thr) = \frac{N_{lnj}}{2}(1 - erf(\frac{thr-\mu}{\sqrt{2}\sigma}))$$

- $\mu = \text{amplitude}, \ \sigma = \text{noise}$
- Saturation also damps the noise
- Already starts below 0.4 V
- Fitted gain for the linear region

Temperature Dependence

- Signal seems increase with temperature
- Trimming (individual pixel threshold adjustment) is implemented differential
- \rightarrow Always offset present
 - Which part of the front end shifts how?
 - Shift in gain also seen in effect of trimming




11/12

- Continue ATLASpix3.1 irradiation studies
 - Time Resolution
 - Efficiency
 - Optimising settings
 - Characterise sensors with high fluence
- DESY testbeam in June 2022 with ATLASpix3.1
- MightyPix1 measurements once it's delivered

BACKUP

AP1 Irradiation

Summary of Efficiencies after Irradiation

• no tuning of pixels; $\leq 81/10000$ pixel masked

Efficiency _{40 Hz}	sub- strate	thick- ness (μm)	bias voltage (#masked pixel)			
fluence (neq/cm²)	(Ω cm)		60 V	70/75 V	80/85 V	90/95 V
n 2e15	80	62	98.5% (81)	98.4% (81)	98.6% (81)	
n 1e15	80	62	99.3% (38)		99.5% (38)	99.5% (39)
n 5e14	80	62	99.5% (19)			
n 2e15	200	100	96.5% (55)		98.7% (60)	98.7% (55)
n 1e15	200	100/725	98.7% (18)	99.4%	99.5%	99.4%
n 5e14	200	100	99.2% (14)			
p 5e14 (50 MRad)	200	100	≥ 99.6% (9)	≥ 99.7% (9)	≥ 99.9% (9)	
p 1e14 (10 MRad biased)	200	725	≥ 99.7%			

 \geq means that the 40 Hz/pixel noise limit was not reached

credit: PhD. Thesis A. Herkert (Uni Heidelberg)

Jan Hammerich

Irradiation for MightyPix

20/05/22