Annual Update: <u>ML Applications to Improve Track Finding and</u> <u>Fitting at the Muon g-2 Experiment</u>

Antony Hibbert 201069849 Supervisor: Joe Price 20/05/22

<u>(Very brief) g-2 Overview</u>

- Measures a_{μ} to a precision of 0.14ppm.
- High intensity beam of polarised muons provided by Fermilab accelerator division.
- Measure ω_a (through ω_s and ω_c) and ω_p

$$\omega_a = \omega_s - \omega_c = a_\mu \frac{eB}{mc}$$

_ Determine muon g-factor via a_{μ} ;

$$a_{\mu} \equiv \frac{(g-2)}{2}$$

Straw Trackers

• Main purpose to help us understand the systematics of ω_a

- Tracks decay particles (e⁺) $\mu^{\mp} \rightarrow e^{\mp} + \nu_{\mu}(\overline{\nu}_{\mu}) + \overline{\nu}_{e}(\nu_{e})$
- Help build up muon spatial distribution

Allows study into betatron motion

Straw Trackers

2 Stations of 1024 straws.

8 modules, 2 views, 2 layers, 31 straws per layer.

Straws filled with 50:50 Ar:Ethane gas with central wire.

Positrons induce a current in the central wire.

• 'Hits' build up a trajectory.

Some events are far more complicated than others, however.

Run 16355, Sub-run 164, Event 5 Island: 6, Station: 18 Start: 213632.0 ns, ∆T = 51.7 ns 24 Hits (24 used)

50 100 0 Tracker x [mm]

Application of RNN for Track Finding and Fitting

- RNN under development to improve track finding and fitting
 - Approach based on multiple LSTM layers
 - **Requires testing dataset & corresponding truth information**
- Initial training was done on 2D pseudo data
 - Simulated hits located at the vertical centre of straws.
 - This approach was found insufficient in preliminary tests
- **Realistic synthetic data has been produced using real run 1 production data**
 - Merging of two well defined tracks onto one 'time island'
 - Initial, real tracks represent truth information
- Noise and "cross-talk" simulations included in dataset for realism
- Ideal, 'well defined' tracks picked using steerable parameters:
 - Late in fill, minimum of four hits, passing a minimum of four modules

An example of a synthetic time island in the RNN structure.

- Track 1 and 2 are distinct real data tracks lacksquare
- Noise and crosstalk not included in this case

- The RNN has successfully found both tracks correctly.
- Synthetic dataset is then re-tracked with incumbent tracking algorithm for direct comparison with **RNN**

- Tracking performance on the same synthetic dataset.
- Noise and crosstalk are included in the dataset

	Main Tracking	ML track finding
True hits assigned correctly (for found tracks)	88.4%	92.5%
Wrongly assigned hits	5.8%	2.8%
Tracks found [and split tracks] out of 1970 tracks	2167 [149] (110.0%)	1799 [6] (91.3%)
Fully-correct tracks found (and fraction of total tracks)	1379 (70.0%)	1330 (67.4%)

	Main Tracking	
True hits assigned correctly (for found tracks)	88.4%	
Wrongly assigned hits	5.8%	

- RNN is more conservative, leading to a smaller assignment error..
- However, this can be tuned as necessary:
 For example, tuned to highest number of correctly found tracks..
- The tracks found with the RNN are more 'complete'.

Tracks found [and split tracks]	2167 [149]	1799 [6]
out of 1970 tracks	(110.0%)	(91.3%)
Fully-correct tracks found (and fraction of total tracks)	1379 (70.0%)	1330 (67.4%)

- Conservative approach of RNN is less error prone...
- However, the main tracking produces more high purity tracks.
- - This leads too more 'fully correct' tracks found in main tracking, however...
 - Still not many more fully correct tracks found (~2.6% improvement).

• The main tracking is more confident, and as such finds more tracks but makes more errors.

Wrongly assigned hits	5.8%	2.8%
Tracks found [and split tracks] out of 1970 tracks	2167 [149] (110.0%)	1799 [6] (91.3%)
Fully-correct tracks found (and fraction of total tracks)	1379 (70.0%)	1330 (67.4%)

<u>Based on preliminary results, using the our higher purity RNN we would have:</u>

- ~19% fewer candidates
 - Low quality candidates would likely not make QC anyway.
 - Save ~15% on Geant iterations and computing resources
- A loss of ~2.6% fully correct candidates.
 - We could tune this away, if necessary.
- Smarter track finding at higher occupancy and complexity

Remaining Questions

• We are still missing the full picture

- We have yet to check how many tracks make the QC
 - Do the RNN tracks pass the QC more frequently than main tracking?
- How relevant are these improvements in high occupancy fills?
 - How frequent are islands made with pileup >= 2?

Creation of more diverse synthetic datatypes required:

- tracking or RNN select the isolated tracks correctly?
- Generation of simpler events to prove the RNN has similar or greater prospects in lower occupancy and complexity fills.

Implementation of RNN code for production.

- Still working on the early stages, with lots of challenges associated with implementation.
- Some expert help will be required here.

Implementation of isolated tracks over real time islands. Does the main

Thank you for listening! *Any questions?*